205 research outputs found

    Acute normobaric hypoxia stimulates erythropoietin release

    Get PDF
    Investigations studying the secretion of EPO (erythropoietin) in response to acute hypoxia have produced mixed results. Further, the errors associated with the various methods used to determine EPO are not well documented. The purpose of the current study was to determine the EPO response of 17 trained male subjects to either an acute bout of normobaric hypoxia (Hy; n = 10) or normoxia (Con; n = 7). A secondary aim was to determine the error associated with the measurement of EPO. After baseline tests, the treatment group (Hy) underwent a single bout of hypoxic exposure (F(I(O(2))) approximately 0.148; 3100 m) consisting of a 90-min rest period followed by a 30-min exercise phase (50% V(O)(2max)). Venous blood samples were drawn pre (0 min) and post (120 min) each test to assess changes in plasma EPO (DeltaEPO). The control (Con) group was subjected to the same general experimental design, but placed in a normoxic environment (F(I(O(2))) approximately 0.2093). The Hy group demonstrated a mean increase in EPO [19.3 (4.4) vs. 24.1 (5.1) mU/mL], p < 0.04, post 120 min of normobaric hypoxia. The calculated technical error of measurement for EPO was 2.1 mU/mL (9.8%). It was concluded that an acute bout of hypoxia, has the capacity to elevate plasma EPO. This study also demonstrates that the increase in EPO accumulation was 2 times greater than the calculated measurement of error

    High intensity exercise decreases IP6K1 muscle content & improves insulin sensitivity in glucose intolerant individuals

    Get PDF
    Context Insulin resistance in skeletal muscle contributes to whole body hyperglycaemia and the secondary complications associated with type 2 diabetes. Inositol hexakisphosphate kinase-1 (IP6K1) may inhibit insulin-stimulated glucose transport in this tissue type. Objective Muscle and plasma IP6K1 were correlated with two-compartment models of glucose control in insulin-resistant hyperinsulimic individuals. Muscle IP6K1 was also compared following two different exercise trials. Methods Nine pre-diabetic [HbA1c; 6.1 (0.2) %)] were recruited to take part in a resting control, a continuous exercise (90% of lactate threshold) and a high-intensity exercise trial (6 x 30 sec sprints). Muscle biopsies were drawn pre- and post each 60-minute trial. A labeled ([6,62H2]glucose) intravenous glucose tolerance test (IVGTT) was performed immediately after the second muscle sample. Results Fasting muscle IP6K1 content did not correlate with SI2* (P = 0.961). High-intensity exercise reduced IP6K1 muscle protein and mRNA expression (P = 0.001). There was no effect on protein IP6K1 content following continuous exercise. Akt308 phosphorylation of was significantly greater following high-intensity exercise. Intermittent exercise reduced hepatic glucose production (HGP) following the same trial. The same intervention also improved SI2* and this was significantly greater compared to the continuous exercise improvements. Our in vitro experiment demonstrated that the chemical inhibition of IP6K1 increased insulin signaling in C2C12 myotubes. Conclusions The in vivo and in vitro approaches used in the current study suggest that a decrease in muscle IP6K1 may be linked to whole body improvements in SI2*. In addition, high-intensity exercise reduces HPG in insulin-resistant individuals

    Huge metastability in high-T_c superconductors induced by parallel magnetic field

    Full text link
    We present a study of the temperature-magnetic field phase diagram of homogeneous and inhomogeneous superconductivity in the case of a quasi-two-dimensional superconductor with an extended saddle point in the energy dispersion under a parallel magnetic field. At low temperature, a huge metastability region appears, limited above by a steep superheating critical field (H_sh) and below by a strongly reentrant supercooling field (H_sc). We show that the Pauli limit (H_p) for the upper critical magnetic field is strongly enhanced due to the presence of the Van Hove singularity in the density of states. The formation of a non-uniform superconducting state is predicted to be very unlikely.Comment: 5 pages, 2 figures; to appear in Phys. Rev.

    Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}

    Full text link
    In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR) are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals with various carrier concentrations, from underdope to overdope. Our crystals show the highest T_c (33 K) and the smallest residual resistivity ever reported for Bi-2201 at optimum doping. It is found that the temperature dependence of the Hall angle obeys a power law T^n with n systematically decreasing with increasing doping, which questions the universality of the Fermi-liquid-like T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab} shows a good T-linear behavior. The systematics of the MR indicates an increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure

    Impurity and interface bound states in dx2y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y superconductors

    Get PDF
    Motivated by recent discoveries of novel superconductors such as Nax_xCoO2y_2\cdot yH2_2O and Sr2_2RuO4_4, we analysize features of quasi-particle scattering due to impurities and interfaces for possible gapful dx2y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y Cooper pairing. A bound state appears near a local impurity, and a band of bound states form near an interface. We obtained analytically the bound state energy, and calculated the space and energy dependent local density of states resolvable by high-resolution scanning tunnelling microscopy. For comparison we also sketch results of impurity and surface states if the pairing is nodal p- or d-wave.Comment: 4 pages, 4 figure

    Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity

    Full text link
    The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx} orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized description of the in-plane electron correlations the superconducting order parameter is found to be a orbital-singlet spin-triplet with two spatial components. The spatial anisotropy is 7%. The different components of the order parameter give rise to two-dimensional gapless fluctuations. The phase transition is of third order. The temperature dependence of the pair density, specific heat, NQR, Knight shift, and susceptibility are in agreement with experimental results.Comment: 20 pages REVTEX, 3 figure

    Fractionalization patterns in strongly correlated electron systems: Spin-charge separation and beyond

    Full text link
    We discuss possible patterns of electron fractionalization in strongly interacting electron systems. A popular possibility is one in which the charge of the electron has been liberated from its Fermi statistics. Such a fractionalized phase contains in it the seed of superconductivity. Another possibility occurs when the spin of the electron, rather than its charge, is liberated from its Fermi statistics. Such a phase contains in it the seed of magnetism, rather than superconductivity. We consider models in which both of these phases occur and study possible phase transitions between them. We describe other fractionalized phases, distinct from these, in which fractions of the electron themselves fractionalize, and discuss the topological characterization of such phases. These ideas are illustrated with specific models of p-wave superconductors, Kondo lattices, and coexistence between d-wave superconductivity and antiferromagnetism.Comment: 28 pages, 11 fig

    The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation

    Get PDF
    We give a theoretical analysis of published experimental studies of the effects of impurities and disorder on the superconducting transition temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X (where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3). The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by magnetic impurities in singlet superconductors, including s-wave superconductors and by non-magnetic impurities in a non-s-wave superconductor. We show that various sources of disorder lead to the suppression of T_c as described by the AG formula. This is confirmed by the excellent fit to the data, the fact that these materials are in the clean limit and the excellent agreement between the value of the interlayer hopping integral, t_perp, calculated from this fit and the value of t_perp found from angular-dependant magnetoresistance and quantum oscillation experiments. If the disorder is, as seems most likely, non-magnetic then the pairing state cannot be s-wave. We show that the cooling rate dependence of the magnetisation is inconsistent with paramagnetic impurities. Triplet pairing is ruled out by several experiments. If the disorder is non-magnetic then this implies that l>=2, in which case Occam's razor suggests that d-wave pairing is realised. Given the proximity of these materials to an antiferromagnetic Mott transition, it is possible that the disorder leads to the formation of local magnetic moments via some novel mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave superconductors or else they display a novel mechanism for the formation of localised moments. We suggest systematic experiments to differentiate between these scenarios.Comment: 18 pages, 5 figure

    Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle

    Get PDF
    corecore