205 research outputs found
Acute normobaric hypoxia stimulates erythropoietin release
Investigations studying the secretion of EPO (erythropoietin) in response to acute hypoxia have produced mixed results. Further, the errors associated with the various methods used to determine EPO are not well documented. The purpose of the current study was to determine the EPO response of 17 trained male subjects to either an acute bout of normobaric hypoxia (Hy; n = 10) or normoxia (Con; n = 7). A secondary aim was to determine the error associated with the measurement of EPO. After baseline tests, the treatment group (Hy) underwent a single bout of hypoxic exposure (F(I(O(2))) approximately 0.148; 3100 m) consisting of a 90-min rest period followed by a 30-min exercise phase (50% V(O)(2max)). Venous blood samples were drawn pre (0 min) and post (120 min) each test to assess changes in plasma EPO (DeltaEPO). The control (Con) group was subjected to the same general experimental design, but placed in a normoxic environment (F(I(O(2))) approximately 0.2093). The Hy group demonstrated a mean increase in EPO [19.3 (4.4) vs. 24.1 (5.1) mU/mL], p < 0.04, post 120 min of normobaric hypoxia. The calculated technical error of measurement for EPO was 2.1 mU/mL (9.8%). It was concluded that an acute bout of hypoxia, has the capacity to elevate plasma EPO. This study also demonstrates that the increase in EPO accumulation was 2 times greater than the calculated measurement of error
High intensity exercise decreases IP6K1 muscle content & improves insulin sensitivity in glucose intolerant individuals
Context
Insulin resistance in skeletal muscle contributes to whole body hyperglycaemia and the secondary complications associated with type 2 diabetes. Inositol hexakisphosphate kinase-1 (IP6K1) may inhibit insulin-stimulated glucose transport in this tissue type.
Objective
Muscle and plasma IP6K1 were correlated with two-compartment models of glucose control in insulin-resistant hyperinsulimic individuals. Muscle IP6K1 was also compared following two different exercise trials.
Methods
Nine pre-diabetic [HbA1c; 6.1 (0.2) %)] were recruited to take part in a resting control, a continuous exercise (90% of lactate threshold) and a high-intensity exercise trial (6 x 30 sec sprints). Muscle biopsies were drawn pre- and post each 60-minute trial. A labeled ([6,62H2]glucose) intravenous glucose tolerance test (IVGTT) was performed immediately after the second muscle sample.
Results
Fasting muscle IP6K1 content did not correlate with SI2* (P = 0.961). High-intensity exercise reduced IP6K1 muscle protein and mRNA expression (P = 0.001). There was no effect on protein IP6K1 content following continuous exercise. Akt308 phosphorylation of was significantly greater following high-intensity exercise. Intermittent exercise reduced hepatic glucose production (HGP) following the same trial. The same intervention also improved SI2* and this was significantly greater compared to the continuous exercise improvements. Our in vitro experiment demonstrated that the chemical inhibition of IP6K1 increased insulin signaling in C2C12 myotubes.
Conclusions
The in vivo and in vitro approaches used in the current study suggest that a decrease in muscle IP6K1 may be linked to whole body improvements in SI2*. In addition, high-intensity exercise reduces HPG in insulin-resistant individuals
Huge metastability in high-T_c superconductors induced by parallel magnetic field
We present a study of the temperature-magnetic field phase diagram of
homogeneous and inhomogeneous superconductivity in the case of a
quasi-two-dimensional superconductor with an extended saddle point in the
energy dispersion under a parallel magnetic field. At low temperature, a huge
metastability region appears, limited above by a steep superheating critical
field (H_sh) and below by a strongly reentrant supercooling field (H_sc). We
show that the Pauli limit (H_p) for the upper critical magnetic field is
strongly enhanced due to the presence of the Van Hove singularity in the
density of states. The formation of a non-uniform superconducting state is
predicted to be very unlikely.Comment: 5 pages, 2 figures; to appear in Phys. Rev.
Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}
In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR)
are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals
with various carrier concentrations, from underdope to overdope. Our crystals
show the highest T_c (33 K) and the smallest residual resistivity ever reported
for Bi-2201 at optimum doping. It is found that the temperature dependence of
the Hall angle obeys a power law T^n with n systematically decreasing with
increasing doping, which questions the universality of the Fermi-liquid-like
T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of
the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab}
shows a good T-linear behavior. The systematics of the MR indicates an
increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure
Impurity and interface bound states in and superconductors
Motivated by recent discoveries of novel superconductors such as
NaCoOHO and SrRuO, we analysize features of
quasi-particle scattering due to impurities and interfaces for possible gapful
and Cooper pairing. A bound state appears near
a local impurity, and a band of bound states form near an interface. We
obtained analytically the bound state energy, and calculated the space and
energy dependent local density of states resolvable by high-resolution scanning
tunnelling microscopy. For comparison we also sketch results of impurity and
surface states if the pairing is nodal p- or d-wave.Comment: 4 pages, 4 figure
Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity
The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp
scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx}
orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized
description of the in-plane electron correlations the superconducting order
parameter is found to be a orbital-singlet spin-triplet with two spatial
components. The spatial anisotropy is 7%. The different components of the order
parameter give rise to two-dimensional gapless fluctuations. The phase
transition is of third order. The temperature dependence of the pair density,
specific heat, NQR, Knight shift, and susceptibility are in agreement with
experimental results.Comment: 20 pages REVTEX, 3 figure
Fractionalization patterns in strongly correlated electron systems: Spin-charge separation and beyond
We discuss possible patterns of electron fractionalization in strongly
interacting electron systems. A popular possibility is one in which the charge
of the electron has been liberated from its Fermi statistics. Such a
fractionalized phase contains in it the seed of superconductivity. Another
possibility occurs when the spin of the electron, rather than its charge, is
liberated from its Fermi statistics. Such a phase contains in it the seed of
magnetism, rather than superconductivity. We consider models in which both of
these phases occur and study possible phase transitions between them. We
describe other fractionalized phases, distinct from these, in which fractions
of the electron themselves fractionalize, and discuss the topological
characterization of such phases. These ideas are illustrated with specific
models of p-wave superconductors, Kondo lattices, and coexistence between
d-wave superconductivity and antiferromagnetism.Comment: 28 pages, 11 fig
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure
- …