123 research outputs found
Topical Microbicides and HIV Prevention in the Female Genital Tract
Worldwide, HIV disproportionately affects women who are often unable to negotiate traditional HIV preventive strategies such as condoms. In the absence of an effective vaccine or cure, chemoprophylaxis may be a valuable self-initiated alternative. Topical microbicides have been investigated as one such option. The first generation topical microbicides were non-specific, broad-spectrum antimicrobial agents, including surfactants, polyanions, and acid buffering gels, that generally exhibited contraceptive properties. After extensive clinical study, none prevented HIV infection, and their development was abandoned. Second generation topical microbicides include agents with selective mechanisms of antiviral activity. Most are currently being used for, or have previously been explored as, drugs for treatment of HIV. The most advanced of these is tenofovir 1% gel: the first topical agent shown to significantly reduce HIV infection by 39% compared to placebo. This review summarizes the evolution of topical microbicides for HIV chemoprophylaxis, highlights important concepts learned, and offers current and future considerations for this area of research
Clinical Pharmacokinetic, Pharmacodynamic and Drug-Interaction Profile of the Integrase Inhibitor Dolutegravir
Dolutegravir is a second generation integrase strand transfer inhibitor (INSTI) currently under review by the US FDA for marketing approval. Dolutegravir’s in vitro, protein adjusted 90% inhibitory concentration (IC90) for wild-type virus is 0.064 μg/ml, and it retains in vitro anti-HIV 1 activity across a broad range of viral phenotypes known to confer resistance to the currently marketed INSTIs, raltegravir and elvitegravir. Dolutegravir has a half-life (t½) of 13 to 14 hours and maintains concentrations over the in vitro, protein adjusted IC90 for more than 30 hours following a single dose. Additionally, dolutegravir has comparatively low intersubject variability compared to raltegravir and elvitegravir. A plasma exposure-response relationship has been well described, with antiviral activity strongly correlating to trough concentration (Ctrough) values. Phase III trials have assessed the antiviral activity of dolutegravir compared with efavirenz and raltegravir in antiretroviral (ARV)-naïve patients and found dolutegravir to achieve more rapid and sustained virologic suppression in both instances. Additionally, studies of dolutegravir activity in patients with known INSTI-resistant mutations have been favorable, indicating that dolutegravir retains activity in a variety of INSTI resistant phenotypes. Much like currently marketed INSTIs, dolutegravir is very well tolerated. Because dolutegravir inhibits the renal transporter, organic cation transporter (OCT) 2, reduced tubular secretion of creatinine leads to non-progressive increases in serum creatinine. These serum creatinine increases have not been associated with decreased glomerular filtration rate or progressive renal impairment. Dolutegravir’s major and minor metabolic pathways are UDP glucuronosyltransferase (UGT)1A1 and cytochrome (CYP)3A4, respectively, and it neither induces nor inhibits CYP isozymes. Thus dolutegravir has a modest drug interaction profile. However, antacids significantly decrease dolutegravir plasma exposure and should be separated by 2 hours before, or 6 hours after, a dolutegravir dose. In summary, dolutegravir is the first of the second generation INSTIs, which exhibits a predictable pharmacokinetic profile and a well-defined exposure-response relationship. Dolutegravir retains activity despite the presence of some class resistant mutations and achieves rapid and sustained virologic suppression in ARV-naïve and -experienced patients. Clinically dolutegravir is poised to become a commonly used component of antiretroviral regimens
Pharmacokinetics of antiretrovirals in mucosal tissue
In the absence of an HIV vaccine or cure, antiretroviral (ARV) based prevention strategies are being investigated to reduce HIV incidence. These prevention strategies depend on achieving effective drug concentrations at the site HIV exposure which is most commonly the mucosal tissues of the lower gastrointestinal tract and the female genital tract
Next-Generation Contraceptive Intravaginal Ring: Comparison of Etonogestrel and Ethinyl Estradiol In Vitro and In Vivo Release from 3D-Printed Intravaginal Ring and NuvaRing
Intravaginal rings (IVRs) represent a well-established, woman-controlled and sustained vaginal drug delivery system suitable for a wide range of applications. Here, we sought to investigate the differences in etonogestrel (ENG) and ethinyl estradiol (EE) release from a 3D-printed IVR utilizing continuous liquid interface production (CLIPâ„¢) (referred to as CLIPLOW for low drug loading and CLIPHIGH IVRs for high drug loading) and NuvaRing, a commercially available injection molded IVR. We conducted in vitro release studies in simulated vaginal fluid to compare the release of ENG and EE from CLIPLOW IVRs and NuvaRing. CLIPLOW IVRs had a similar hormone dose to NuvaRing and exhibited slightly slower ENG release and greater EE release in vitro compared to NuvaRing. When administered to female sheep, NuvaRing demonstrated greater ENG/EE levels in plasma, vaginal tissue and vaginal fluids compared to CLIPLOW IVR despite similar drug loadings. Leveraging observed hormones levels in sheep from NuvaRing as an effective contraceptive benchmark, we developed a long-acting CLIPHIGH IVR with increased ENG and EE doses that demonstrated systemic and local hormone levels greater than the NuvaRing for 90 days in sheep. No signs of toxicity were noted regarding general health, colposcopy, or histological analysis in sheep after CLIPHIGH IVR administration. Our results provided (1) a comparison of ENG and EE release between a 3D-printed IVR and NuvaRing in vitro and in vivo, (2) a preclinical pharmacokinetic benchmark for vaginally delivered ENG and EE and (3) the generation of a 90-day CLIP IVR that will be utilized in future work to support the development of a long-acting ENG/EE IVR combined with an antiretroviral for the prevention of HIV and unplanned pregnancy
EFdA efficiently suppresses HIV replication in the male genital tract and prevents penile HIV acquisition
Sexually transmitted HIV infections in heterosexual men are acquired through the penis. Low adherence to condom usage and the fact that 40% of circumcised men are not protected indicate the need for additional prevention strategies. Here, we describe a new approach to evaluate the prevention of penile HIV transmission. We demonstrated that the entire male genital tract (MGT) of bone marrow/liver/thymus (BLT) humanized mice is repopulated with human T and myeloid cells. The majority of the human T cells in the MGT express CD4 and CCR5. Direct penile exposure to HIV leads to systemic infection including all tissues of the MGT. HIV replication throughout the MGT was reduced 100-1,000-fold by treatment with 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), resulting in the restoration of CD4+ T cell levels. Importantly, systemic preexposure prophylaxis with EFdA effectively protects from penile HIV acquisition. IMPORTANCE Over 84.2 million people have been infected by the human immunodeficiency virus type 1 (HIV-1) during the past 40 years, most through sexual transmission. Men comprise approximately half of the HIV-infected population worldwide. Sexually transmitted HIV infections in exclusively heterosexual men are acquired through the penis. However, direct evaluation of HIV infection throughout the human male genital tract (MGT) is not possible. Here, we developed a new in vivo model that permits, for the first time, the detail analysis of HIV infection. Using BLT humanized mice, we showed that productive HIV infection occurs throughout the entire MGT and induces a dramatic reduction in human CD4 T cells compromising immune responses in this organ. Antiretroviral treatment with novel drug EFdA suppresses HIV replication in all tissues of the MGT, restores normal levels of CD4 T cells and is highly efficient at preventing penile transmission
Effect of HIV-infection and menopause status on raltegravir pharmacokinetics in the blood and genital tract
This study describes first dose and steady state pharmacokinetics of raltegravir (RAL) in cervicovaginal fluid (CVF) and blood plasma (BP)
Long-acting injectable multipurpose prevention technology for prevention of HIV and unplanned pregnancy
Only condoms are proven to protect against both HIV and unplanned pregnancy, however, poor user acceptability and lack of partner cooperation impede effectiveness. We developed an injectable ultra-long-acting, biodegradable, and removable in-situ forming implant (ISFI) as multipurpose prevention technology (MPT). MPT ISFIs co-formulated an antiretroviral (dolutegravir (DTG)) or cabotegravir (CAB)), and a hormonal contraceptive (etonogestrel (ENG) or medroxyprogesterone acetate (MPA)). All formulations were well-tolerated in mice with no signs of chronic local or systemic inflammation. Plasma CAB and DTG concentrations were above 4x PA-IC90 for 90 days with zero-order and diffusion-controlled absorption, respectively, and no differences when co-formulated with either hormone. Plasma ENG and MPA concentrations were quantifiable for 90 days. Complete removal of CAB/MPA ISFIs resulted in MPA concentrations falling below the limit of quantification after 24 h post-removal, but incomplete CAB elimination from plasma. Collectively, we demonstrated the ability to co-formulate antiretrovirals with contraceptives in an ISFI that is well-tolerated with sustained plasma concentrations up to 90 days
Concentrations of Pro-Inflammatory Cytokines Are Not Associated with Senescence Marker p16INK4a or Predictive of Intracellular Emtricitabine/Tenofovir Metabolite and Endogenous Nucleotide Exposures in Adults with HIV Infection
As the HIV-infected population ages, the role of cellular senescence and inflammation on co-morbid conditions and pharmacotherapy is increasingly of interest. p16INK4a expression, a marker for aging and senescence in T-cells, is associated with lower intracellular concentrations of endogenous nucleotides (EN) and nucleos(t)ide reverse transcriptase inhibitors (NRTIs). This study expands on these findings by determining whether inflammation is contributing to the association of p16INK4a expression with intracellular metabolite (IM) exposure and endogenous nucleotide concentrations
Effects of Injection Volume and Route of Administration on Dolutegravir In Situ Forming Implant Pharmacokinetics
Due to the versatility of the in situ forming implant (ISFI) drug delivery system, it is crucial to understand the effects of formulation parameters for clinical translation. We utilized ultrasound imaging and pharmacokinetics (PK) in mice to understand the impact of administration route, injection volume, and drug loading on ISFI formation, degradation, and drug release in mice. Placebo ISFIs injected subcutaneously (SQ) with smaller volumes (40 μL) exhibited complete degradation within 30–45 days, compared to larger volumes (80 μL), which completely degraded within 45–60 days. However, all dolutegravir (DTG)-loaded ISFIs along the range of injection volumes tested (20–80 μL) were present at 90 days post-injection, suggesting that DTG can prolong ISFI degradation. Ultrasound imaging showed that intramuscular (IM) ISFIs flattened rapidly post administration compared to SQ, which coincides with the earlier Tmax for drug-loaded IM ISFIs. All mice exhibited DTG plasma concentrations above four times the protein-adjusted 90% inhibitory concentration (PA-IC90) throughout the entire 90 days of the study. ISFI release kinetics best fit to zero order or diffusion-controlled models. When total administered dose was held constant, there was no statistical difference in drug exposure regardless of the route of administration or number of injections
Cervicovaginal and Rectal Fluid as a Surrogate Marker of Antiretroviral Tissue Concentration: Implications for Clinical Trial Design
Quantifying tissue drug concentrations can yield important information during drug development, but complicates pharmacokinetic study design. Mucosal fluids collected by direct aspiration(cervicovaginal fluid; CVF) or swab(rectal fluid; RF) might be used as tissue concentration surrogates, but these relationships are not well characterized
- …