33 research outputs found

    Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: an observational cohort study using the OpenSAFELY platform.

    Get PDF
    BACKGROUND: COVID-19 has disproportionately affected minority ethnic populations in the UK. Our aim was to quantify ethnic differences in SARS-CoV-2 infection and COVID-19 outcomes during the first and second waves of the COVID-19 pandemic in England. METHODS: We conducted an observational cohort study of adults (aged ≥18 years) registered with primary care practices in England for whom electronic health records were available through the OpenSAFELY platform, and who had at least 1 year of continuous registration at the start of each study period (Feb 1 to Aug 3, 2020 [wave 1], and Sept 1 to Dec 31, 2020 [wave 2]). Individual-level primary care data were linked to data from other sources on the outcomes of interest: SARS-CoV-2 testing and positive test results and COVID-19-related hospital admissions, intensive care unit (ICU) admissions, and death. The exposure was self-reported ethnicity as captured on the primary care record, grouped into five high-level census categories (White, South Asian, Black, other, and mixed) and 16 subcategories across these five categories, as well as an unknown ethnicity category. We used multivariable Cox regression to examine ethnic differences in the outcomes of interest. Models were adjusted for age, sex, deprivation, clinical factors and comorbidities, and household size, with stratification by geographical region. FINDINGS: Of 17 288 532 adults included in the study (excluding care home residents), 10 877 978 (62·9%) were White, 1 025 319 (5·9%) were South Asian, 340 912 (2·0%) were Black, 170 484 (1·0%) were of mixed ethnicity, 320 788 (1·9%) were of other ethnicity, and 4 553 051 (26·3%) were of unknown ethnicity. In wave 1, the likelihood of being tested for SARS-CoV-2 infection was slightly higher in the South Asian group (adjusted hazard ratio 1·08 [95% CI 1·07-1·09]), Black group (1·08 [1·06-1·09]), and mixed ethnicity group (1·04 [1·02-1·05]) and was decreased in the other ethnicity group (0·77 [0·76-0·78]) relative to the White group. The risk of testing positive for SARS-CoV-2 infection was higher in the South Asian group (1·99 [1·94-2·04]), Black group (1·69 [1·62-1·77]), mixed ethnicity group (1·49 [1·39-1·59]), and other ethnicity group (1·20 [1·14-1·28]). Compared with the White group, the four remaining high-level ethnic groups had an increased risk of COVID-19-related hospitalisation (South Asian group 1·48 [1·41-1·55], Black group 1·78 [1·67-1·90], mixed ethnicity group 1·63 [1·45-1·83], other ethnicity group 1·54 [1·41-1·69]), COVID-19-related ICU admission (2·18 [1·92-2·48], 3·12 [2·65-3·67], 2·96 [2·26-3·87], 3·18 [2·58-3·93]), and death (1·26 [1·15-1·37], 1·51 [1·31-1·71], 1·41 [1·11-1·81], 1·22 [1·00-1·48]). In wave 2, the risks of hospitalisation, ICU admission, and death relative to the White group were increased in the South Asian group but attenuated for the Black group compared with these risks in wave 1. Disaggregation into 16 ethnicity groups showed important heterogeneity within the five broader categories. INTERPRETATION: Some minority ethnic populations in England have excess risks of testing positive for SARS-CoV-2 and of adverse COVID-19 outcomes compared with the White population, even after accounting for differences in sociodemographic, clinical, and household characteristics. Causes are likely to be multifactorial, and delineating the exact mechanisms is crucial. Tackling ethnic inequalities will require action across many fronts, including reducing structural inequalities, addressing barriers to equitable care, and improving uptake of testing and vaccination. FUNDING: Medical Research Council

    Stretch-Induced Stress Fiber Remodeling and the Activations of JNK and ERK Depend on Mechanical Strain Rate, but Not FAK

    Get PDF
    BACKGROUND: Cells within tissues are subjected to mechanical forces caused by extracellular matrix deformation. Cells sense and dynamically respond to stretching of the matrix by reorienting their actin stress fibers and by activating intracellular signaling proteins, including focal adhesion kinase (FAK) and the mitogen-activated proteins kinases (MAPKs). Theoretical analyses predict that stress fibers can relax perturbations in tension depending on the rate of matrix strain. Thus, we hypothesized stress fiber organization and MAPK activities are altered to an extent dependent on stretch frequency. PRINCIPAL FINDINGS: Bovine aortic endothelial cells and human osteosarcoma cells expressing GFP-actin were cultured on elastic membranes and subjected to various patterns of stretch. Cyclic stretching resulted in strain rate-dependent increases in stress fiber alignment, cell retraction, and the phosphorylation of the MAPKs JNK, ERK and p38. Transient step changes in strain rate caused proportional transient changes in the levels of JNK and ERK phosphorylations without affecting stress fiber organization. Disrupting stress fiber contractile function with cytochalasin D or Y27632 decreased the levels of JNK and ERK phosphorylation. Previous studies indicate that FAK is required for stretch-induced cell alignment and MAPK activations. However, cyclic uniaxial stretching induced stress fiber alignment and the phosphorylation of JNK, ERK and p38 to comparable levels in FAK-null and FAK-expressing mouse embryonic fibroblasts. CONCLUSIONS: These results indicate that cyclic stretch-induced stress fiber alignment, cell retraction, and MAPK activations occur as a consequence of perturbations in fiber strain. These findings thus shed new light into the roles of stress fiber relaxation and reorganization in maintenance of tensional homeostasis in a dynamic mechanical environment
    corecore