186 research outputs found

    Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species

    Get PDF
    Abstract. Leaching is a mechanism for the release of nutrients from litter or senesced leaves that can drive interactions among plants, microbes, and soil. Although leaching is well established in conceptual models of litter decomposition, potential nutrient solubility of mineral elements from recently senesced litter has seldom been quantified. Using a standardized extraction (1:50 litter-to-water ratio and four-hour extraction) and recently senesced leaf litter of 41 tropical tree and liana species, we investigated how solubility varies among elements, and whether the solubility of elements could be predicted by litter traits (e.g., lignin, total element concentrations). In addition, we investigated nutrient forms (i.e., inorganic and organic) and ratios in leachate. Water-soluble elements per unit litter mass were strongly predicted by total initial litter element concentrations for potassium (K; r 2 ¼ 0.79), sodium (Na; r 2 ¼ 0.51) and phosphorus (P; r 2 ¼ 0.66), while a significant but weaker positive relationship was found for nitrogen (N; r 2 ¼ 0.36). There was no significant relationship for carbon (C) or calcium (Ca). Element-specific solubility varied markedly. On average 100% of total K, 35% of total P, 28% of total Na, 5% of total N, 4% of total Ca, and 3% of total C were soluble. For soluble P, 90% was inorganic orthophosphate. The high solubility of K, Na, and P as inorganic orthophosphate suggests that these nutrients can become rapidly available to litter microbes with no metabolic cost. Few common predictors of decomposition rates were correlated with element solubility, although soluble C (milligrams per gram of litter) was negatively related to lignin content (r 2 ¼ 0.19; P , 0.004). Solubility of elements was linked within a species: when a species ranked high in the soluble fraction of one element, it also ranked high in the solubility of other elements. Overall nutrient-specific patterns of solubility from recently senesced litter emphasize that litter elements cannot be treated equally in our conceptual and empirical models of decomposition. The relatively high potential solubility of P as orthophosphate from fresh litter advances our understanding of ecological stoichiometric ratios and nutrient bioavailability in tropical forests

    The response of Arctic vegetation and soils following an unusually severe tundra fire

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Philosophical Transactions of the Royal Society B Biological Sciences 368 (2013): 20120490, doi:10.1098/rstb.2012.0490.Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km2 of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub–sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred.This work was supported by NSF (no. OPP-0632264) and NSF (no. OPP-1107892) to M. S. Bret-Harte, NSF (no. OPP-0856853) to G. R. Shaver and NSF (no. OPP-6737545) to M. C. Mack

    Bottom-up drivers of future fire regimes in western boreal North America

    Get PDF
    Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climate will act to decrease biomass and increase deciduous fraction in many regions of boreal North America. These changes are accompanied by decreases in fire probability and average fire intensity, despite fuel drying, indicating a negative feedback of fuel loading on wildfire. These simulations demonstrate the importance of dynamic fuels and dynamic vegetation in predicting future forest and wildfire conditions. The vegetation and wildfire changes predicted here have implications for large-scale changes in vegetation composition, biomass, and wildfire severity across boreal North America, potentially resulting in further feedbacks to regional and even global climate and carbon cycling

    Bottom-Up Drivers of Future Fire Regimes in Western Boreal North America

    Get PDF
    Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climate will act to decrease biomass and increase deciduous fraction in many regions of boreal North America. These changes are accompanied by decreases in fire probability and average fire intensity, despite fuel drying, indicating a negative feedback of fuel loading on wildfire. These simulations demonstrate the importance of dynamic fuels and dynamic vegetation in predicting future forest and wildfire conditions. The vegetation and wildfire changes predicted here have implications for large-scale changes in vegetation composition, biomass, and wildfire severity across boreal North America, potentially resulting in further feedbacks to regional and even global climate and carbon cycling

    Impacts of Climate and Insect Herbivory on Productivity and Physiology of Trembling Aspen (Populus tremuloides) in Alaskan Boreal Forests

    Get PDF
    Climate change is impacting forested ecosystems worldwide, particularly in the Northern Hemisphere where warming has increased at a faster rate than the rest of the globe. As climate warms, trembling aspen (Populus tremuloides) is expected to become more successful in northern boreal forests because of its current presence in drier areas of North America. However, large-scale productivity decline of aspen has recently been documented throughout the United States and Canada as a result of drought and insect outbreaks. We used tree ring measurements (basal area increment (BAI) and stable carbon isotopes (δ 13C)) and remote sensing indices of vegetation productivity (NDVI) to study the impact of climate and damage by the aspen epidermal leaf miner (Phyllocnistis populiella) on aspen productivity and physiology in interior Alaska. We found that productivity decreased with greater leaf mining and was not sensitive to growing season (GS) moisture availability. Although productivity decreased during high leaf mining years, it recovered to pre-outbreak levels during years of low insect damage, suggesting a degree of resilience to P. populiella mining. Climate and leaf mining interacted to influence tree ring δ 13C, with greater leaf mining resulting in decreased δ 13C when GS moisture availability was low. We also found that NDVI was negatively associated with leaf mining, and positively correlated with BAI and the δ 13C decrease corresponding to mining. This suggests that NDVI is capturing not only variations in productivity, but also changes in physiology associated with P. populiella. Overall, these findings indicate that the indirect effects of P. populiella mining have a larger impact on aspen productivity and physiology than climate under current conditions, and is essential to consider when assessing growth, physiology and NDVI trends in interior Alaska
    • …
    corecore