24 research outputs found

    The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The antibacterial activity of bacteriophages has been described rather well. However, knowledge about the direct interactions of bacteriophages with mammalian organisms and their other, i.e. non-antibacterial, activities in mammalian systems is quite scarce. It must be emphasised that bacteriophages are natural parasites of bacteria, which in turn are parasites or symbionts of mammals (including humans). Bacteriophages are constantly present in mammalian bodies and the environment in great amounts. On the other hand, the perspective of the possible use of bacteriophage preparations for antibacterial therapies in cancer patients generates a substantial need to investigate the effects of phages on cancer processes.</p> <p>Results</p> <p>In these studies the migration of human and mouse melanoma on fibronectin was inhibited by purified T4 and HAP1 bacteriophage preparations. The migration of human melanoma was also inhibited by the HAP1 phage preparation on matrigel. No response of either melanoma cell line to lipopolysaccharide was observed. Therefore the effect of the phage preparations cannot be attributed to lipopolysaccharide. No differences in the effects of T4 and HAP1 on melanoma migration were observed.</p> <p>Conclusion</p> <p>We believe that these observations are of importance for any further attempts to use bacteriophage preparations in antibacterial treatment. The risk of antibiotic-resistant hospital infections strongly affects cancer patients and these results suggest the possibility of beneficial phage treatment. We also believe that they will contribute to the general understanding of bacteriophage biology, as bacteriophages, extremely ubiquitous entities, are in permanent contact with human organisms.</p

    Phages as a Cohesive Prophylactic and Therapeutic Approach in Aquaculture Systems

    No full text
    Facing antibiotic resistance has provoked a continuously growing focus on phage therapy. Although the greatest emphasis has always been placed on phage treatment in humans, behind phage application lies a complex approach that can be usefully adopted by the food industry, from hatcheries and croplands to ready-to-eat products. Such diverse businesses require an efficient method for combating highly pathogenic bacteria since antibiotic resistance concerns every aspect of human life. Despite the vast abundance of phages on Earth, the aquatic environment has been considered their most natural habitat. Water favors multidirectional Brownian motion and increases the possibility of contact between phage particles and their bacterial hosts. As the global production of aquatic organisms has rapidly grown over the past decades, phage treatment of bacterial infections seems to be an obvious and promising solution in this market sector. Pathogenic bacteria, such as Aeromonas and Vibrio, have already proved to be responsible for mass mortalities in aquatic systems, resulting in economic losses. The main objective of this work is to summarize, from a scientific and industry perspective, the recent data regarding phage application in the form of targeted probiotics and therapeutic agents in aquaculture niches

    Phage Prevalence in the Human Urinary Tract—Current Knowledge and Therapeutic Implications

    No full text
    Recent metagenomic analyses imply an immense abundance of phages in the human body. Samples collected from different sites (lungs, skin, oral cavity, intestines, ascitic fluid, and urine) reveal a generally greater number of phage particles than that of eukaryotic viruses. The presence of phages in those tissues and fluids reflects the paths they must overcome in the human body, but may also relate to the health statuses of individuals. Besides shaping bacterial metabolism and community structure, the role of phages circulating in body fluids has not been fully understood yet. The lack of relevant reports is especially visible with regard to the human urobiome. Certainly, phage presence and the role they have to fulfill in the human urinary tract raises questions on potential therapeutic connotations. Urinary tract infections (UTIs) are among the most common bacterial infections in humans and their treatment poses a difficult therapeutic dilemma. Despite effective antibiotic therapy, these infections tend to recur. In this review, we summarized the recent data on phage presence in the human urinary tract and its possible implications for health and disease

    Bronisława Fejgin (1883–1943): Forgotten Important Contributor to International Microbiology and Phage Therapy

    No full text
    Bronisława Brandla Fejgin was a Polish-born Jewish female physician. Among Fejgin’s numerous articles in the field of microbiology, her later work was almost entirely devoted to phage research. Although not equally famous as the phage pioneers from Western Europe, F.W. Twort and F. d’Herelle, Fejgin’s contribution to phage research deserves proper recognition. Her studies on phages resulted in the publication of numerous original scientific reports. These articles, published mostly in French, constitute an important source of information and expertise on early attempts towards therapeutic use of phages in humans. The interwar period marks the most intense years in Bronisława Fejgin’s research activity, brutally interrupted by her death in the Warsaw Ghetto in 1943. Her microbiology contributions have not been analyzed so far. Thus, the aim of this article is to fill the existing gap in the history of microbiology and phage therapy

    The Presence of Bacteriophages in the Human Body: Good, Bad or Neutral?

    No full text
    The presence of bacteriophages (phages) in the human body may impact bacterial microbiota and modulate immunity. The role of phages in human microbiome studies and diseases is poorly understood. However, the correlation between a greater abundance of phages in the gut in ulcerative colitis and diabetes has been suggested. Furthermore, most phages found at different sites in the human body are temperate, so their therapeutic effects and their potential beneficial effects remain unclear. Hence, far, no correlation has been observed between the presence of widespread crAssphage in the human population and human health and diseases. Here, we emphasize the beneficial effects of phage transfer in fecal microbiota transplantation (FMT) in Clostridioides difficile infection. The safety of phage use in gastrointestinal disorders has been demonstrated in clinical studies. The significance of phages in the FMT as well as in gastrointestinal disorders remains to be established. An explanation of the multifaceted role of endogenous phages for the development of phage therapy is required

    How Interest in Phages Has Bloomed into a Leading Medical Research Activity in Poland

    No full text
    Poland has a leading position in phage therapy, as reflected by the number of patients treated and relevant publications in quality journals. The Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences was established by Ludwik Hirszfeld, a prominent microbiologist and serologist who also initiated studies on phages and pioneered the activities that set into motion phage therapy at the Institute. To achieve this goal, Hirszfeld had to overcome many difficulties in a post-war Poland. He died a month before the official start of the Institute&rsquo;s activity and was not able to witness the advancement of the Institute bearing his name. However, his hard work and dedication have been recently rewarded. In a recent evaluation of scientific performance, the Institute received the highest ranking in medical sciences among all universities and research institutions in Poland. One could consider it a posthumous tribute to the memory of L. Hirszfeld, being well-deserved on the grounds of the Institute&rsquo;s achievements (especially in the field of phage therapy) as well as his life and work

    Do Anti-Phage Antibodies Persist after Phage Therapy? A Preliminary Report

    No full text
    Phages are immunogenic and may evoke an immune response following their administration. Consequently, patients undergoing phage therapy (PT) produce phage-neutralizing serum antibodies. The clinical significance of this phenomenon for the success or failure of the therapy is currently unclear. Interestingly, even a strong anti-phage humoral response does not exclude the success of PT. On the other hand, it cannot be ruled out that phage&ndash;antibody complexes may be trapped in tissues and organs causing injury and late complications of PT. Therefore, patients should be monitored for the presence of serum antibodies and therapy discontinued if their level is high. Our preliminary data suggest that the kinetics of the disappearance of those antibodies may vary from patient to patient and in some cases may take more than a year

    A Thorough Synthesis of Phage Therapy Unit Activity in Poland—Its History, Milestones and International Recognition

    No full text
    The year 2020 marked 15 years of the Phage Therapy Unit in Poland, the inception of which took place just one year after Poland’s accession to the European Union (2004). At first sight, it is hard to find any connection between these two events, but in fact joining the European Union entailed the need to adapt the regulatory provisions concerning experimental treatment in humans to those that were in force in the European Union. These changes were a solid foundation for the first phage therapy center in the European Union to start its activity. As the number of centers conducting phage therapy in Europe and in the world constantly and rapidly grows, we want to grasp the opportunity to take a closer look at the over 15-year operation of our site by analyzing its origins, legal aspects at the local and international levels and the impressive number and diversity of cases that have been investigated and treated during this time. This article is a continuation of our work published in 2020 summarizing a 100-year history of the development of phage research in Poland
    corecore