525 research outputs found
Fluctuation relations for a driven Brownian particle
We consider a driven Brownian particle, subject to both conservative and
non-conservative applied forces, whose probability evolves according to the
Kramers equation. We derive a general fluctuation relation, expressing the
ratio of the probability of a given Brownian path in phase space with that of
the time-reversed path, in terms of the entropy flux to the heat reservoir.
This fluctuation relation implies those of Seifert, Jarzynski and
Gallavotti-Cohen in different special cases
Transport Statistics of Bistable Systems
We consider the transport statistics of classical bistable systems driven by
noise. The stochastic path integral formalism is used to investigate the
dynamics and distribution of transmitted charge. Switching rates between the
two stable states are found from an instanton calculation, leading to an
effective two-state system on a long time scale. In the bistable current range,
the telegraph noise dominates the distribution, whose logarithm is found to be
universally described by a tilted ellipse.Comment: 4 pages, 3 figures, version to appear in Phys. Rev. Let
Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method
We derive a coarse-grained equation of motion of a number density by applying
the projection operator method to a non-relativistic model. The derived
equation is an integrodifferential equation and contains the memory effect. The
equation is consistent with causality and the sum rule associated with the
number conservation in the low momentum limit, in contrast to usual acausal
diffusion equations given by using the Fick's law. After employing the Markov
approximation, we find that the equation has the similar form to the causal
diffusion equation. Our result suggests that current-current correlations are
not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.
On the emergence of very long time fluctuations and 1/f noise in ideal flows
This study shows the connection between three previously observed but
seemingly unrelated phenomena in hydrodynamic (HD) and magnetohydrodynamic
(MHD) turbulent flows, involving the emergence of fluctuations occurring on
very long time scales: the low-frequency 1/f noise in the power frequency
spectrum, the delayed ergodicity of complex valued amplitude fluctuations in
wavenumber space, and the spontaneous flippings or reversals of large scale
fields. Direct numerical simulations of ideal MHD and HD are employed in three
space dimensions, at low resolution, for long periods of time, and with high
accuracy to study several cases: Different geometries, presence of rotation
and/or a uniform magnetic field, and different values of the associated
conserved global quantities. It is conjectured that the origin of all these
long-time phenomena is rooted in the interaction of the longest wavelength
fluctuations available to the system with fluctuations at much smaller scales.
The strength of this non-local interaction is controlled either by the
existence of conserved global quantities with a back-transfer in Fourier space,
or by the presence of a slow manifold in the dynamics.Comment: 17 pages, 21 figures, accepted for publication in Physical Review
One-by-one trap activation in silicon nanowire transistors
Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors
(MOSFETs) has been identified as the main source of noise at low frequency. It
often originates from an ensemble of a huge number of charges trapping and
detrapping. However, a deviation from the well-known model of 1/f noise is
observed for nanoscale MOSFETs and a new model is required. Here, we report the
observation of one-by-one trap activation controlled by the gate voltage in a
nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale
FETs. We demonstrate that the Coulomb repulsion between electronically charged
trap sites avoids the activation of several traps simultaneously. This effect
induces a noise reduction by more than one order of magnitude. It decreases
when increasing the electron density in the channel due to the electrical
screening of traps. These findings are technologically useful for any FETs with
a short and narrow channel.Comment: One file with paper and supplementary informatio
Decoherence of a Josephson qubit due to coupling to two level systems
Noise and decoherence are major obstacles to the implementation of Josephson
junction qubits in quantum computing. Recent experiments suggest that two level
systems (TLS) in the oxide tunnel barrier are a source of decoherence. We
explore two decoherence mechanisms in which these two level systems lead to the
decay of Rabi oscillations that result when Josephson junction qubits are
subjected to strong microwave driving. (A) We consider a Josephson qubit
coupled resonantly to a two level system, i.e., the qubit and TLS have equal
energy splittings. As a result of this resonant interaction, the occupation
probability of the excited state of the qubit exhibits beating. Decoherence of
the qubit results when the two level system decays from its excited state by
emitting a phonon. (B) Fluctuations of the two level systems in the oxide
barrier produce fluctuations and 1/f noise in the Josephson junction critical
current I_o. This in turn leads to fluctuations in the qubit energy splitting
that degrades the qubit coherence. We compare our results with experiments on
Josephson junction phase qubits.Comment: 23 pages, Latex, 6 encapsulated postscript figure
Linear Stochastic Models of Nonlinear Dynamical Systems
We investigate in this work the validity of linear stochastic models for
nonlinear dynamical systems. We exploit as our basic tool a previously proposed
Rayleigh-Ritz approximation for the effective action of nonlinear dynamical
systems started from random initial conditions. The present paper discusses
only the case where the PDF-Ansatz employed in the variational calculation is
``Markovian'', i.e. is determined completely by the present values of the
moment-averages. In this case we show that the Rayleigh-Ritz effective action
of the complete set of moment-functions that are employed in the closure has a
quadratic part which is always formally an Onsager-Machlup action. Thus,
subject to satisfaction of the requisite realizability conditions on the noise
covariance, a linear Langevin model will exist which reproduces exactly the
joint 2-time correlations of the moment-functions. We compare our method with
the closely related formalism of principal oscillation patterns (POP), which,
in the approach of C. Penland, is a method to derive such a linear Langevin
model empirically from time-series data for the moment-functions. The
predictive capability of the POP analysis, compared with the Rayleigh-Ritz
result, is limited to the regime of small fluctuations around the most probable
future pattern. Finally, we shall discuss a thermodynamics of statistical
moments which should hold for all dynamical systems with stable invariant
probability measures and which follows within the Rayleigh-Ritz formalism.Comment: 36 pages, 5 figures, seceq.sty for sequential numbering of equations
by sectio
Academic freedom in Europe: reviewing UNESCOâs recommendation
This paper examines the compliance of universities in the European Union with the UNESCO Recommendation concerning the Status of HigherâEducation Teaching Personnel, which deals primarily with protection for academic freedom. The paper briefly surveys the European genesis of the modern research university and academic freedom, before evaluating compliance with the UNESCO recommendation on institutional autonomy, academic freedom, university governance and tenure. Following from this, the paper examines the reasons for the generally low level of compliance with the UNESCO Recommendation within the EU states, and considers how such compliance could be improved
Direct-Current Induced Dynamics in Co90Fe10/Ni80Fe20 Point Contacts
We have directly measured coherent high-frequency magnetization dynamics in
ferromagnet films induced by a spin-polarized DC current. The precession
frequency can be tuned over a range of several gigahertz, by varying the
applied current. The frequencies of excitation also vary with applied field,
resulting in a microwave oscillator that can be tuned from below 5 GHz to above
40 GHz. This novel method of inducing high-frequency dynamics yields
oscillations having quality factors from 200 to 800. We compare our results
with those from single-domain simulations of current-induced dynamics
Conditional statistics of electron transport in interacting nanoscale conductors
Interactions between nanoscale semiconductor structures form the basis for
charge detectors in the solid state. Recent experimental advances have
demonstrated the on-chip detection of single electron transport through a
quantum dot (QD). The discreteness of charge in units of e leads to intrinsic
fluctuations in the electrical current, known as shot noise. To measure these
single-electron fluctuations a nearby coherent conductor, called a quantum
point contact (QPC), interacts with the QD and acts as a detector. An important
property of the QPC charge detector is noninvasiveness: the system physically
affects the detector, not visa-versa. Here we predict that even for ideal
noninvasive detectors such as the QPC, when a particular detector result is
observed, the system suffers an informational backaction, radically altering
the statistics of transport through the QD as compared to the unconditional
shot noise. We develop a theoretical model to make predictions about the joint
current probability distributions and conditional transport statistics. The
experimental findings reported here demonstrate the reality of informational
backaction in nanoscale systems as well as a variety of new effects, such as
conditional noise enhancement, which are in essentially perfect agreement with
our model calculations. This type of switching telegraph process occurs
abundantly in nature, indicating that these results are applicable to a wide
variety of systems.Comment: 16 pages, 3 figures, to appear in Nature Physic
- âŠ