76 research outputs found
Protostellar Jet and Outflow in the Collapsing Cloud Core
We investigate the driving mechanism of outflows and jets in star formation
process using resistive MHD nested grid simulations. We found two distinct
flows in the collapsing cloud core: Low-velocity outflows (sim 5 km/s) with a
wide opening angle, driven from the first adiabatic core, and high-velocity
jets (sim 50 km/s) with good collimation, driven from the protostar.
High-velocity jets are enclosed by low-velocity outflow. The difference in the
degree of collimation between the two flows is caused by the strength of the
magnetic field and configuration of the magnetic field lines. The magnetic
field around an adiabatic core is strong and has an hourglass configuration.
Therefore, the low-velocity outflow from the adiabatic core are driven mainly
by the magnetocentrifugal mechanism and guided by the hourglass-like field
lines. In contrast, the magnetic field around the protostar is weak and has a
straight configuration owing to Ohmic dissipation in the high-density gas
region. Therefore, high-velocity jet from the protostar are driven mainly by
the magnetic pressure gradient force and guided by straight field lines.
Differing depth of the gravitational potential between the adiabatic core and
the protostar cause the difference of the flow speed. Low-velocity outflows
correspond to the observed molecular outflows, while high-velocity jets
correspond to the observed optical jets. We suggest that the protostellar
outflow and the jet are driven by different cores (the first adiabatic core and
protostar), rather than that the outflow being entrained by the jet.Comment: To appear in the proceedings of the "Protostellar Jets in Context"
conference held on the island of Rhodes, Greece (7-12 July 2008
Full coherent control of nuclear spins in an optically pumped single quantum dot
Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce
effective magnetic (Overhauser) fields of up to several Tesla acting on the
electron spin or up to a few hundred mT for the hole spin. Recently this has
been recognized as a resource for intrinsic control of QD-based spin quantum
bits. However, only static long-lived Overhauser fields could be used. Here we
demonstrate fast redirection on the microsecond time-scale of Overhauser fields
of the order of 0.5 T experienced by a single electron spin in an optically
pumped GaAs quantum dot. This has been achieved using full coherent control of
an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of
short radio-frequency (rf) pulses. These results open the way to a new class of
experiments using rf techniques to achieve highly-correlated nuclear spins in
quantum dots, such as adiabatic demagnetization in the rotating frame leading
to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin
squeezing
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Rescue of Photoreceptor Degeneration by Curcumin in Transgenic Rats with P23H Rhodopsin Mutation
The P23H mutation in the rhodopsin gene causes rhodopsin misfolding, altered trafficking and formation of insoluble aggregates leading to photoreceptor degeneration and autosomal dominant retinitis pigmentosa (RP). There are no effective therapies to treat this condition. Compounds that enhance dissociation of protein aggregates may be of value in developing new treatments for such diseases. Anti-protein aggregating activity of curcumin has been reported earlier. In this study we present that treatment of COS-7 cells expressing mutant rhodopsin with curcumin results in dissociation of mutant protein aggregates and decreases endoplasmic reticulum stress. Furthermore we demonstrate that administration of curcumin to P23H-rhodopsin transgenic rats improves retinal morphology, physiology, gene expression and localization of rhodopsin. Our findings indicate that supplementation of curcumin improves retinal structure and function in P23H-rhodopsin transgenic rats. This data also suggest that curcumin may serve as a potential therapeutic agent in treating RP due to the P23H rhodopsin mutation and perhaps other degenerative diseases caused by protein trafficking defects
An operative case of hepatic pseudolymphoma difficult to differentiate from primary hepatic marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue
Hepatic pseudolymphoma (HPL) and primary hepatic marginal zone B cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) are rare diseases and the differential diagnosis between these two entities is sometimes difficult. We herein report a 56-year-old Japanese woman who was pointed out to have a space occupying lesion in the left lateral segment of the liver. Hepatitis viral-associated antigen/antibody was negative and liver function tests including lactic dehydrogenase, peripheral blood count, tumor markers and soluble interleukin-2 receptor were all within normal limit. Imaging study using computed tomography and magnetic resonance imaging were not typical for hepatocellular carcinoma, cholangiocarcinoma, or other metastatic cancer. Fluorodeoxyglucose-positron emission tomography examination integrated with computed tomography scanning showed high standardized uptake value in the solitary lesion in the liver. Under a diagnosis of primary liver neoplasm, laparoscopic-assisted lateral segmentectomy was performed. Liver tumor of maximal 1.0 cm in diameter was consisted of aggregation of lymphocytes of predominantly B-cell, containing multiple lymphocyte follicles positive for CD10 and bcl-2, consistent with a diagnosis of HPL rather than MALT lymphoma, although a definitive differentiation was pending. The background liver showed non-alcoholic fatty liver disease/early non-alcoholic steatohepatitis. The patient is currently doing well with no sign of relapse 13 months after the surgery. Since the accurate diagnosis is difficult, laparoscopic approach would provide a reasonable procedure of diagnostic and therapeutic advantage with minimal invasiveness for patients. Considering that the real nature of this entity remains unclear, vigilant follow-up of patient is essential
The First Stars
The first stars to form in the Universe -- the so-called Population III stars
-- bring an end to the cosmological Dark Ages, and exert an important influence
on the formation of subsequent generations of stars and on the assembly of the
first galaxies. Developing an understanding of how and when the first
Population III stars formed and what their properties were is an important goal
of modern astrophysical research. In this review, I discuss our current
understanding of the physical processes involved in the formation of Population
III stars. I show how we can identify the mass scale of the first dark matter
halos to host Population III star formation, and discuss how gas undergoes
gravitational collapse within these halos, eventually reaching protostellar
densities. I highlight some of the most important physical processes occurring
during this collapse, and indicate the areas where our current understanding
remains incomplete. Finally, I discuss in some detail the behaviour of the gas
after the formation of the first Population III protostar. I discuss both the
conventional picture, where the gas does not undergo further fragmentation and
the final stellar mass is set by the interplay between protostellar accretion
and protostellar feedback, and also the recently advanced picture in which the
gas does fragment and where dynamical interactions between fragments have an
important influence on the final distribution of stellar masses.Comment: 72 pages, 4 figures. Book chapter to appear in "The First Galaxies -
Theoretical Predictions and Observational Clues", 2012 by Springer, eds. V.
Bromm, B. Mobasher, T. Wiklin
Population genomics of marine zooplankton
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that
distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of
population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has
slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated
species and diversity of genomic architecture, including highly-replicated genomes of many
crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is
transforming our ability to analyze population genetics and connectivity of marine zooplankton, and
providing new understanding and different answers than earlier analyses, which typically used
mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that,
despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic
populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population
connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are
critically needed to allow further examination of micro-evolution and local adaptation, including
identification of genes that show evidence of selection. These new tools will also enable further
examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to
discriminate genetic “noise” in large and patchy populations from local adaptation to environmental
conditions and change.Support was provided by the
US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to
IS and MC was provided by Nord University (Norway)
- …