4 research outputs found

    Spatial period-doubling in Bose-Einstein condensates in an optical lattice

    Full text link
    We demonstrate that there exist stationary states of Bose-Einstein condensates in an optical lattice that do not satisfy the usual Bloch periodicity condition. Using the discrete model appropriate to the tight-binding limit we determine energy bands for period-doubled states in a one-dimensional lattice. In a complementary approach we calculate the band structure from the Gross-Pitaevskii equation, considering both states of the usual Bloch form and states which have the Bloch form for a period equal to twice that of the optical lattice. We show that the onset of dynamical instability of states of the usual Bloch form coincides with the occurrence of period-doubled states with the same energy. The period-doubled states are shown to be related to periodic trains of solitons.Comment: 4 pages, 3 figures, change of conten

    Loss and revival of phase coherence in a Bose-Einstein condensate moving through an optical lattice

    Full text link
    We investigate the phase coherence of a trapped Bose-Einstein condensate that undergoes a dynamical superfluid-insulator transition in the presence of a one-dimensional optical lattice. We study the evolution of the condensate after a sudden displacement of the harmonic trapping potential by solving the Gross-Pitaevskii equation, and comparing the results with the prediction of two effective 1D models. We show that, owing to the 3D nature of the system, the breakdown of the superfluid current above a critical displacement is not associated to a sharp transition, but there exists a range of displacements for which the condensate can recover a certain degree of coherence. We also discuss the implications on the interference pattern after the ballistic expansion as measured in recent experiments at LENS.Comment: 7 pages, 9 figure

    Superfluid Dynamics of a Bose-Einstein Condensate in a Periodic Potential

    Full text link
    We investigate the superfluid properties of a Bose-Einstein condensate (BEC) trapped in a one dimensional periodic potential. We study, both analytically (in the tight binding limit) and numerically, the Bloch chemical potential, the Bloch energy and the Bogoliubov dispersion relation, and we introduce {\it two} different, density dependent, effective masses and group velocities. The Bogoliubov spectrum predicts the existence of sound waves, and the arising of energetic and dynamical instabilities at critical values of the BEC quasi-momentum which dramatically affect its coherence properties. We investigate the dependence of the dipole and Bloch oscillation frequencies in terms of an effective mass averaged over the density of the condensate. We illustrate our results with several animations obtained solving numerically the time-dependent Gross-Pitaevskii equation.Comment: 13 pages, 7 figures, movies and published paper available at http://www.iop.org/EJ/abstract/1367-2630/5/1/11

    Superfluidity of Bose-Einstein Condensate in An Optical Lattice: Landau-Zener Tunneling and Dynamical Instability

    Full text link
    Superflow of Bose-Einstein condensate in an optical lattice is represented by a Bloch wave, a plane wave with periodic modulation of the amplitude. We review the theoretical results on the interaction effects in the energy dispersion of the Bloch waves and in the linear stability of such waves. For sufficiently strong repulsion between the atoms, the lowest Bloch band develops a loop at the edge of the Brillouin zone, with the dramatic consequence of a finite probability of Landau-Zener tunneling even in the limit of a vanishing external force. Superfluidity can exist in the central region of the Brillouin zone in the presence of a repulsive interaction, beyond which Landau instability takes place where the system can lower its energy by making transition into states with smaller Bloch wavenumbers. In the outer part of the region of Landau instability, the Bloch waves are also dynamically unstable in the sense that a small initial deviation grows exponentially in time. In the inner region of Landau instability, a Bloch wave is dynamically stable in the absence of persistent external perturbations. Experimental implications of our findings will be discussed.Comment: A new section on tight-binding approximation is added with a new figur
    corecore