4 research outputs found
Confronting the trans-Planckian question of inflationary cosmology with dissipative effects
We provide a class of QFTs which exhibit dissipation above a threshold
energy, thereby breaking Lorentz invariance. Unitarity is preserved by coupling
the fields to additional degrees of freedom (heavy fields) which introduce the
rest frame. Using the Equivalence Principle, we define these theories in
arbitrary curved spacetime. We then confront the trans-Planckian question of
inflationary cosmology. When dissipation increases with the energy, the quantum
field describing adiabatic perturbations is completely damped at the onset of
inflation. However it still exists as a composite operator made with the
additional fields. And when these are in their ground state, the standard power
spectrum obtains if the threshold energy is much larger that the Hubble
parameter. In fact, as the energy redshifts below the threshold, the composite
operator behaves as if it were a free field endowed with standard vacuum
fluctuations. The relationship between our models and the Brane World scenarios
studied by Libanov and Rubakov displaying similar effects is discussed. The
signatures of dissipation will be studied in a forthcoming paper.Comment: 30 pages, 1 Figure, to appear in CQ
Quantum Spacetime Phenomenology
I review the current status of phenomenological programs inspired by
quantum-spacetime research. I stress in particular the significance of results
establishing that certain data analyses provide sensitivity to effects
introduced genuinely at the Planck scale. And my main focus is on
phenomenological programs that managed to affect the directions taken by
studies of quantum-spacetime theories.Comment: 125 pages, LaTex. This V2 is updated and more detailed than the V1,
particularly for quantum-spacetime phenomenology. The main text of this V2 is
about 25% more than the main text of the V1. Reference list roughly double
Analogue Gravity
Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion
by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular
has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental
front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum
gravity)