4 research outputs found

    Confronting the trans-Planckian question of inflationary cosmology with dissipative effects

    Full text link
    We provide a class of QFTs which exhibit dissipation above a threshold energy, thereby breaking Lorentz invariance. Unitarity is preserved by coupling the fields to additional degrees of freedom (heavy fields) which introduce the rest frame. Using the Equivalence Principle, we define these theories in arbitrary curved spacetime. We then confront the trans-Planckian question of inflationary cosmology. When dissipation increases with the energy, the quantum field describing adiabatic perturbations is completely damped at the onset of inflation. However it still exists as a composite operator made with the additional fields. And when these are in their ground state, the standard power spectrum obtains if the threshold energy is much larger that the Hubble parameter. In fact, as the energy redshifts below the threshold, the composite operator behaves as if it were a free field endowed with standard vacuum fluctuations. The relationship between our models and the Brane World scenarios studied by Libanov and Rubakov displaying similar effects is discussed. The signatures of dissipation will be studied in a forthcoming paper.Comment: 30 pages, 1 Figure, to appear in CQ

    Quantum Spacetime Phenomenology

    Get PDF
    I review the current status of phenomenological programs inspired by quantum-spacetime research. I stress in particular the significance of results establishing that certain data analyses provide sensitivity to effects introduced genuinely at the Planck scale. And my main focus is on phenomenological programs that managed to affect the directions taken by studies of quantum-spacetime theories.Comment: 125 pages, LaTex. This V2 is updated and more detailed than the V1, particularly for quantum-spacetime phenomenology. The main text of this V2 is about 25% more than the main text of the V1. Reference list roughly double

    Analogue Gravity

    Get PDF
    Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity)
    corecore