320 research outputs found

    The activation of α1-adrenoceptors is implicated in the antidepressant-like effect of creatine in the tail suspension test

    Get PDF
    AbstractThe antidepressant-like activity of creatine in the tail suspension test (TST) was demonstrated previously by our group. In this study we investigated the involvement of the noradrenergic system in the antidepressant-like effect of creatine in the mouse TST. In the first set of experiments, creatine administered by i.c.v. route (1Όg/site) decreased the immobility time in the TST, suggesting the central effect of this compound. The anti-immobility effect of peripheral administration of creatine (1mg/kg, p.o.) was prevented by the pretreatment of mice with α-methyl-p-tyrosine (100mg/kg, i.p., inhibitor of tyrosine hydroxylase), prazosin (1mg/kg, i.p., α1-adrenoceptor antagonist), but not by yohimbine (1mg/kg, i.p., α2-adrenoceptor antagonist). Creatine (0.01mg/kg, subeffective dose) in combination with subeffective doses of amitriptyline (1mg/kg, p.o., tricyclic antidepressant), imipramine (0.1mg/kg, p.o., tricyclic antidepressant), reboxetine (2mg/kg, p.o., selective noradrenaline reuptake inhibitor) or phenylephrine (0.4Όg/site, i.c.v., α1-adrenoceptor agonist) reduced the immobility time in the TST as compared with either drug alone. These results indicate that the antidepressant-like effect of creatine is likely mediated by an activation of α1-adrenoceptor and that creatine produces synergistic effects in the TST with antidepressants that modulate noradrenaline transporter, suggesting that an improvement in the response to the antidepressant therapy may occur when creatine is combined with these antidepressants. Furthermore, the synergistic effect of creatine (0.01mg/kg, p.o.) and reboxetine (2mg/kg, p.o.) combination was abolished by the α1-adrenoceptor antagonist prazosin, indicating that the antidepressant-like effect of combined therapy is likely mediated by an activation of α1-adrenoceptor

    Tribological Performance of Random Sinter Pores vs. Deterministic Laser Surface Textures: An Experimental and Machine Learning Approach

    Get PDF
    This work critically scrutinizes and compares the tribological performance of randomly distributed surface pores in sintered materials and precisely tailored laser textures produced by different laser surface texturing techniques. The pore distributions and dimensions were modified by changing the sintering parameters, while the topological features of the laser textures were varied by changing the laser sources and structuring parameters. Ball-on-disc tribological experiments were carried out under lubricated combined sliding-rolling conditions. Film thickness was measured in-situ through a specific interferometry technique developed for the study of rough surfaces. Furthermore, a machine learning approach based on the radial basis function method was proposed to predict the frictional behavior of contact interfaces with surface irregularities. The main results show that both sintered and laser textured materials can reduce friction compared to the untextured material under certain operating conditions. Moreover, the machine learning model was shown to predict results with satisfactory accuracy. It was also found that the performance of sintered materials could lead to similar improvements as achieved by textured surfaces, even if surface pores are randomly distributed and not precisely controlled

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    • 

    corecore