1,687 research outputs found
Mid-upper arm circumference (MUAC) as a feasible tool in detecting adult malnutrition
Objectives: This study aimed to expand on the limited South African malnutrition prevalence data and investigate the feasibility of mid-upper-arm circumference (MUAC) as a malnutrition screening tool.
Design: A cross-sectional, multi-centre, descriptive design was adopted.
Setting: The study was undertaken in three tertiary public hospitals in the same urban area within the Eastern Cape of South Africa.
Subjects: Adult hospitalised patients volunteered to participate (n = 266).
Methods: Data were collected using interviewer-administered questionnaires; obtaining anthropometric measurements; and consulting medical files. For maximum accuracy of various MUAC cut-off points, receiver operating characteristic curves were generated and area under the curve determined.
Results: Both body mass index (BMI) and MUAC identified 21% of participants as underweight or malnourished, and 39% as overweight or obese. The Malnutrition Universal Screening Tool (MUST) found 23% at increased malnutrition risk. Nurses or doctors detected and referred only 19% of underweight patients (BMI < 18.5 kg/m2), to dietetics services. Direct measurements of BMI and MUST were unobtainable in 38% and 43% of patients respectively, whilst MUAC was obtainable in 100%. A statistically significant relationship (p < 0.001) exists between MUAC, BMI and MUST to detect malnutrition or malnutrition risk. MUAC cut-offs for undernutrition were determined at < 23 cm (BMI < 16 kg/m2) and < 24 cm (BMI < 18.5 kg/m2), respectively, for the study’s population groups.
Conclusion: Malnutrition prevalence was high in this study, but often unidentified, with only a fifth referred to dietetic services. MUAC is a feasible method to identify adult malnutrition and should be considered as a malnutrition screening tool and key nutritional status indicator in South African public hospitals
Strong Nebular Line Ratios in the Spectra of z~2-3 Star-forming Galaxies: First Results from KBSS-MOSFIRE
We present initial results of a deep near-IR spectroscopic survey covering
the 15 fields of the Keck Baryonic Structure Survey (KBSS) using MOSFIRE on the
Keck 1 telescope, focusing on a sample of 251 galaxies with redshifts 2.0< z <
2.6, star-formation rates 2 < SFR < 200 M_sun/yr, and stellar masses 8.6 <
log(M*/M_sun) < 11.4, with high-quality spectra in both H- and K-band
atmospheric windows. We show unambiguously that the locus of z~2.3 galaxies in
the "BPT" nebular diagnostic diagram exhibits a disjoint, yet similarly tight,
relationship between the ratios [NII]6585/Halpha and [OIII]/Hbeta as compared
to local galaxies. Using photoionization models, we argue that the offset of
the z~2.3 locus relative to z~ 0 is explained by a combination of harder
ionizing radiation field, higher ionization parameter, and higher N/O at a
given O/H than applies to most local galaxies, and that the position of a
galaxy along the z~2.3 star-forming BPT locus is surprisingly insensitive to
gas-phase oxygen abundance. The observed nebular emission line ratios are most
easily reproduced by models in which the net ionizing radiation field resembles
a blackbody with effective temperature T_eff = 50000-60000 K and N/O close to
the solar value at all O/H. We critically assess the applicability of
commonly-used strong line indices for estimating gas-phase metallicities, and
consider the implications of the small intrinsic scatter in the empirical
relationship between excitation-sensitive line indices and stellar mass (i.e.,
the "mass-metallicity" relation), at z~2.3.Comment: 41 pages, 25 figures, accepted for publication in the Astrophysical
Journal. Version with full-resolution figures available at
http://www.astro.caltech.edu/~ccs/mos_bpt_submit.pd
Chemical Abundances Of Open Clusters From High-Resolution Infrared Spectra. I. NGC 6940
We present near-infrared spectroscopic analysis of 12 red giant members of
the Galactic open cluster NGC 6940. High-resolution (R45000) and high
signal-to-noise ratio (S/N > 100) near-infrared H and K band spectra were
gathered with the Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7m
Smith Telescope at McDonald Observatory. We obtained abundances of H-burning
(C, N, O), (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group
(Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report
the abundances of S, P, K, Ce, and Yb in NGC 6940 for the first time. Many OH
and CN features in the H band were used to obtain O and N abundances. C
abundances were measured from four different features: CO molecular lines in
the K band, high excitation C I lines present in both near-infrared and
optical, CH and bands in the optical region. We have also determined
ratios from the R-branch band heads of first overtone (2-0) and
(3-1) (2-0) lines near 23440
\overset{\lower.5em\circ}{\mathrm{A}} and (3-1) lines at about
23730 \overset{\lower.5em\circ}{\mathrm{A}}. We have also investigated the HF
feature at 23358.3 \overset{\lower.5em\circ}{\mathrm{A}}, finding solar
fluorine abundances without ruling out a slight enhancement. For some elements
(such as the group), IGRINS data yield more internally
self-consistent abundances. We also revisited the CMD of NGC 6940 by
determining the most probable cluster members using Gaia DR2. Finally, we
applied Victoria isochrones and MESA models in order to refine our estimates of
the evolutionary stages of our targets.Comment: 16 pages, 10 figure
Re-entrant resonant tunneling
We study the effect of electron-electron interactions on the
resonant-tunneling spectroscopy of the localized states in a barrier. Using a
simple model of three localized states, we show that, due to the Coulomb
interactions, a single state can give rise to two resonant peaks in the
conductance as a function of gate voltage, G(Vg). We also demonstrate that an
additional higher-order resonance with Vg-position in between these two peaks
becomes possibile when interactions are taken into account. The corresponding
resonant-tunneling process involves two-electron transitions. We have observed
both these effects in GaAs transistor microstructures by studying the time
evolution of three adjacent G(Vg) peaks caused by fluctuating occupation of an
isolated impurity (modulator). The heights of the two stronger peaks exibit
in-phase fluctuations. The phase of fluctuations of the smaller middle peak is
opposite. The two stronger peaks have their origin in the same localized state,
and the third one corresponds to a co-tunneling process.Comment: 9 pages, REVTeX, 4 figure
Observed Variability at 1um and 4um in the Y0 Brown Dwarf WISEP J173835.52+273258.9
We have monitored photometrically the Y0 brown dwarf WISEP
J173835.52+273258.9 (W1738) at both near- and mid-infrared wavelengths. This ~1
Gyr-old 400K dwarf is at a distance of 8pc and has a mass around 5 M_Jupiter.
We observed W1738 using two near-infrared filters at lambda~1um, Y and J, on
Gemini observatory, and two mid-infrared filters at lambda~4um, [3.6] and
[4.5], on the Spitzer observatory. Twenty-four hours were spent on the source
by Spitzer on each of June 30 and October 30 2013 UT. Between these
observations, around 5 hours were spent on the source by Gemini on each of July
17 and August 23 2013 UT. The mid-infrared light curves show significant
evolution between the two observations separated by four months. We find that a
double sinusoid can be fit to the [4.5] data, where one sinusoid has a period
of 6.0 +/- 0.1 hours and the other a period of 3.0 +/- 0.1 hours. The
near-infrared observations suggest variability with a ~3.0 hour period,
although only at a <~2 sigma confidence level. We interpret our results as
showing that the Y dwarf has a 6.0 +/- 0.1 hour rotation period, with one or
more large-scale surface features being the source of variability. The
peak-to-peak amplitude of the light curve at [4.5] is 3%. The amplitude of the
near-infrared variability, if real, may be as high as 5 to 30%. Intriguingly,
this size of variability and the wavelength dependence can be reproduced by
atmospheric models that include patchy KCl and Na_2S clouds and associated
small changes in surface temperature. The small number of large features, and
the timescale for evolution of the features, is very similar to what is seen in
the atmospheres of the solar system gas giants.Comment: Accepted by ApJ July 26 2016. Twenty-six pages include 8 Figures and
5 Table
Time correlations and 1/f behavior in backscattering radar reflectivity measurements from cirrus cloud ice fluctuations
The state of the atmosphere is governed by the classical laws of fluid motion
and exhibits correlations in various spatial and temporal scales. These
correlations are crucial to understand the short and long term trends in
climate. Cirrus clouds are important ingredients of the atmospheric boundary
layer. To improve future parameterization of cirrus clouds in climate models,
it is important to understand the cloud properties and how they change within
the cloud. We study correlations in the fluctuations of radar signals obtained
at isodepths of winter and fall cirrus clouds. In particular we focus on three
quantities: (i) the backscattering cross-section, (ii) the Doppler velocity and
(iii) the Doppler spectral width. They correspond to the physical coefficients
used in Navier Stokes equations to describe flows, i.e. bulk modulus,
viscosity, and thermal conductivity. In all cases we find that power-law time
correlations exist with a crossover between regimes at about 3 to 5 min. We
also find that different type of correlations, including 1/f behavior,
characterize the top and the bottom layers and the bulk of the clouds. The
underlying mechanisms for such correlations are suggested to originate in ice
nucleation and crystal growth processes.Comment: 33 pages, 9 figures; to appear in the Journal of Geophysical Research
- Atmosphere
- …