256 research outputs found
A survey of medical students to assess their exposure to and knowledge of renal transplantation
BACKGROUND: Within the field of renal transplantation there is a lack of qualified and trainee surgeons and a shortage of donated organs. Any steps to tackle these issues should, in part, be aimed at future doctors. METHODS: A questionnaire was distributed to final year students at a single medical school in the UK to assess their exposure to and knowledge of renal transplantation. RESULTS: Although 46% of responding students had examined a transplant recipient, only 14% had ever witnessed the surgery. Worryingly, 9% of students believed that xenotransplantation commonly occurs in the UK and 35% were unable to name a single drug that a recipient may need to take. CONCLUSIONS: This survey demonstrates a lack of exposure to, and knowledge of, the field of renal transplantation. Recommendations to address the problems with the recruitment of surgeons and donation of organs, by targeting medical students are made
Genetic Structure, Linkage Disequilibrium and Signature of Selection in Sorghum: Lessons from Physically Anchored DArT Markers
Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r2 decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod
A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.)
Late leaf spot (LLS) and rust are two major foliar diseases of groundnut (Arachis hypogaea L.) that often occur together leading to 50–70% yield loss in the crop. A total of 268 recombinant inbred lines of a mapping population TAG 24 × GPBD 4 segregating for LLS and rust were used to undertake quantitative trait locus (QTL) analysis. Phenotyping of the population was carried out under artificial disease epiphytotics. Positive correlations between different stages, high to very high heritability and independent nature of inheritance between both the diseases were observed. Parental genotypes were screened with 1,089 simple sequence repeat (SSR) markers, of which 67 (6.15%) were found polymorphic. Segregation data obtained for these markers facilitated development of partial linkage map (14 linkage groups) with 56 SSR loci. Composite interval mapping (CIM) undertaken on genotyping and phenotyping data yielded 11 QTLs for LLS (explaining 1.70–6.50% phenotypic variation) in three environments and 12 QTLs for rust (explaining 1.70–55.20% phenotypic variation). Interestingly a major QTL associated with rust (QTLrust01), contributing 6.90–55.20% variation, was identified by both CIM and single marker analysis (SMA). A candidate SSR marker (IPAHM 103) linked with this QTL was validated using a wide range of resistant/susceptible breeding lines as well as progeny lines of another mapping population (TG 26 × GPBD 4). Therefore, this marker should be useful for introgressing the major QTL for rust in desired lines/varieties of groundnut through marker-assisted backcrossing
New algorithm improves fine structure of the barley consensus SNP map
<p>Abstract</p> <p>Background</p> <p>The need to integrate information from multiple linkage maps is a long-standing problem in genetics. One way to visualize the complex ordinal relationships is with a directed graph, where each vertex in the graph is a bin of markers. When there are no ordering conflicts between the linkage maps, the result is a directed acyclic graph, or DAG, which can then be linearized to produce a consensus map.</p> <p>Results</p> <p>New algorithms for the simplification and linearization of consensus graphs have been implemented as a package for the R computing environment called DAGGER. The simplified consensus graphs produced by DAGGER exactly capture the ordinal relationships present in a series of linkage maps. Using either linear or quadratic programming, DAGGER generates a consensus map with minimum error relative to the linkage maps while remaining ordinally consistent with them. Both linearization methods produce consensus maps that are compressed relative to the mean of the linkage maps. After rescaling, however, the consensus maps had higher accuracy (and higher marker density) than the individual linkage maps in genetic simulations. When applied to four barley linkage maps genotyped at nearly 3000 SNP markers, DAGGER produced a consensus map with improved fine structure compared to the existing barley consensus SNP map. The root-mean-squared error between the linkage maps and the DAGGER map was 0.82 cM per marker interval compared to 2.28 cM for the existing consensus map. Examination of the barley hardness locus at the 5HS telomere, for which there is a physical map, confirmed that the DAGGER output was more accurate for fine structure analysis.</p> <p>Conclusions</p> <p>The R package DAGGER is an effective, freely available resource for integrating the information from a set of consistent linkage maps.</p
Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma
Using kinetic theory for homogeneous collisionless magnetized plasmas, we
present an extended review of the plasma waves and instabilities and discuss
the anisotropic response of generalized relativistic dielectric tensor and
Onsager symmetry properties for arbitrary distribution functions. In general,
we observe that for such plasmas only those electromagnetic modes whose
magnetic field perturbations are perpendicular to the ambient magneticeld,
i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique
propagation all modes do show such anisotropic effects. Considering the
non-relativistic bi-Maxwellian distribution and studying the relevant
components of the general dielectric tensor under appropriate conditions, we
derive the dispersion relations for various modes and instabilities. We show
that only the electromagnetic R- and L- waves, those derived from them and the
O-mode are affected by thermal anisotropies, since they satisfy the required
condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and
the modes derived from it (the pure transverse X-mode and Bernstein mode) show
no such effect. In general, we note that the thermal anisotropy modifies the
parallel propagating modes via the parallel acoustic effect, while it modifies
the perpendicular propagating modes via the Larmor-radius effect. In oblique
propagation for kinetic Alfven waves, the thermal anisotropy affects the
kinetic regime more than it affects the inertial regime. The generalized fast
mode exhibits two distinct acoustic effects, one in the direction parallel to
the ambient magnetic field and the other in the direction perpendicular to it.
In the fast-mode instability, the magneto-sonic wave causes suppression of the
firehose instability. We discuss all these propagation characteristics and
present graphic illustrations
Automatic Annotation of Spatial Expression Patterns via Sparse Bayesian Factor Models
Advances in reporters for gene expression have made it possible to document and quantify expression patterns in 2D–4D. In contrast to microarrays, which provide data for many genes but averaged and/or at low resolution, images reveal the high spatial dynamics of gene expression. Developing computational methods to compare, annotate, and model gene expression based on images is imperative, considering that available data are rapidly increasing. We have developed a sparse Bayesian factor analysis model in which the observed expression diversity of among a large set of high-dimensional images is modeled by a small number of hidden common factors. We apply this approach on embryonic expression patterns from a Drosophila RNA in situ image database, and show that the automatically inferred factors provide for a meaningful decomposition and represent common co-regulation or biological functions. The low-dimensional set of factor mixing weights is further used as features by a classifier to annotate expression patterns with functional categories. On human-curated annotations, our sparse approach reaches similar or better classification of expression patterns at different developmental stages, when compared to other automatic image annotation methods using thousands of hard-to-interpret features. Our study therefore outlines a general framework for large microscopy data sets, in which both the generative model itself, as well as its application for analysis tasks such as automated annotation, can provide insight into biological questions
Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map
<p>Abstract</p> <p>Background</p> <p>Triticale is adapted to a wide range of abiotic stress conditions, is an important high-quality feed stock and produces similar grain yield but more biomass compared to other crops. Modern genomic approaches aimed at enhancing breeding progress in cereals require high-quality genetic linkage maps. Consensus maps are genetic maps that are created by a joint analysis of the data from several segregating populations and different approaches are available for their construction. The phenomenon that alleles at a locus deviate from the Mendelian expectation has been defined as segregation distortion. The study of segregation distortion is of particular interest in doubled haploid (DH) populations due to the selection pressure exerted on the plants during the process of their establishment.</p> <p>Results</p> <p>The final consensus map, constructed out of six segregating populations derived from nine parental lines, incorporated 2555 DArT markers mapped to 2602 loci (1929 unique). The map spanned 2309.9 cM with an average number of 123.9 loci per chromosome and an average marker density of one unique locus every 1.2 cM. The R genome showed the highest marker coverage followed by the B genome and the A genome. In general, locus order was well maintained between the consensus linkage map and the component maps. However, we observed several groups of loci for which the colinearity was slightly uneven. Among the 2602 loci mapped on the consensus map, 886 showed distorted segregation in at least one of the individual mapping populations. In several DH populations derived by androgenesis, we found chromosomes (2B, 3B, 1R, 2R, 4R and 7R) containing regions where markers exhibited a distorted segregation pattern. In addition, we observed evidence for segregation distortion between pairs of loci caused either by a predominance of parental or recombinant genotypes.</p> <p>Conclusions</p> <p>We have constructed a reliable, high-density DArT marker consensus genetic linkage map as a basis for genomic approaches in triticale research and breeding, for example for multiple-line cross QTL mapping experiments. The results of our study exemplify the tremendous impact of different DH production techniques on allele frequencies and segregation distortion covering whole chromosomes.</p
- …