7 research outputs found

    Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse

    Full text link
    The dynamics of electric field generation and radial acceleration of ions by a laser pulse of relativistic intensity propagating in an underdense plasma has been investigated using an one-dimensional electrostatic, ponderomotive model developed to interpret experimental measurements of electric fields [S. Kar et al, New J. Phys. *9*, 402 (2007)]. Ions are spatially focused at the edge of the charge-displacement channel, leading to hydrodynamical breaking, which in turns causes the heating of electrons and an "echo" effect in the electric field. The onset of complete electron depletion in the central region of the channel leads to a smooth transition to a "Coulomb explosion" regime and a saturation of ion acceleration.Comment: 9 pages, 7 figures, final revised version, to appear on Plasma Phys. Contr. Fus., special issue on "Laser and Plasma Accelerators", scheduled for February, 200

    Ion dynamics and coherent structure formation following laser pulse self-channeling

    Full text link
    The propagation of a superintense laser pulse in an underdense, inhomogeneous plasma has been studied numerically by two-dimensional particle-in-cell simulations on a time scale extending up to several picoseconds. The effects of the ion dynamics following the charge-displacement self-channeling of the laser pulse have been addressed. Radial ion acceleration leads to the ``breaking'' of the plasma channel walls, causing an inversion of the radial space-charge field and the filamentation of the laser pulse. At later times a number of long-lived, quasi-periodic field structures are observed and their dynamics is characterized with high resolution. Inside the plasma channel, a pattern of electric and magnetic fields resembling both soliton- and vortex-like structures is observed.Comment: 10 pages, 5 figures (visit http://www.df.unipi.it/~macchi to download a high-resolution version), to appear in Plasma Physics and Controlled Fusion (Dec. 2007), special issue containing invited papers from the 34th EPS Conference on Plasma Physics (Warsaw, July 2007

    Generation and Observation of Coherent, Long--Lived Structures in a Laser--Plasma Channel

    Get PDF
    SUMMARY In recent experiments of laser pulse interaction at relativistic intensities with a low density plasma, the proton radiography technique showed evidence of long--lived field structures generated after the self-channeling of the laser pulse. We present 2D particle-in-cell simulations of this interaction regime, where the dynamics of similar structures has been resolved with high temporal and spatial resolution. An axially symmetrical field pattern, resembling both soliton-like and vortex structures, has been observed. A study of the physics of such structures and a comparison with experimental data is in progress
    corecore