320 research outputs found

    Par3 Controls Epithelial Spindle Orientation by aPKC-Mediated Phosphorylation of Apical Pins

    Get PDF
    SummaryBackgroundFormation of epithelial sheets requires that cell division occurs in the plane of the sheet. During mitosis, spindle poles align so the astral microtubules contact the lateral cortex. Confinement of the mammalian Pins protein to the lateral cortex is essential for this process. Defects in signaling through Cdc42 and atypical protein kinase C (aPKC) also cause spindle misorientation. When epithelial cysts are grown in 3D cultures, misorientation creates multiple lumens.ResultsWe now show that silencing of the polarity protein Par3 causes spindle misorientation in Madin-Darby canine kidney cell cysts. Silencing of Par3 also disrupts aPKC association with the apical cortex, but expression of an apically tethered aPKC rescues normal lumen formation. During mitosis, Pins is mislocalized to the apical surface in the absence of Par3 or by inhibition of aPKC. Active aPKC increases Pins phosphorylation on Ser401, which recruits 14-3-3 protein. 14-3-3 binding inhibits association of Pins with Gαi, through which Pins attaches to the cortex. A Pins S401A mutant mislocalizes over the cell cortex and causes spindle orientation and lumen defects.ConclusionsThe Par3 and aPKC polarity proteins ensure correct spindle pole orientation during epithelial cell division by excluding Pins from the apical cortex. Apical aPKC phosphorylates Pins, which results in the recruitment of 14-3-3 and inhibition of binding to Gαi, so the Pins falls off the cortex. In the absence of a functional exclusion mechanism, astral microtubules can associate with Pins over the entire epithelial cortex, resulting in randomized spindle pole orientation

    Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10

    Full text link
    The stimulation of glucose uptake by insulin in muscle and adipose tissue requires translocation of the GLUT4 glucose transporter protein from intracellular storage sites to the cell surface(1-6). Although the cellular dynamics of GLUT4 vesicle trafficking are well described, the signalling pathways that link the insulin receptor to GLUT4 translocation remain poorly understood. Activation of phosphatidylinositol-3-OH kinase (PI(3)K) is required for this trafficking event, but it is not sufficient to produce GLUT4 translocation(7). We previously described a pathway involving the insulin-stimulated tyrosine phosphorylation of Cbl, which is recruited to the insulin receptor by the adapter protein CAP(8,9). On phosphorylation, Cbl is translocated to lipid rafts. Blocking this step completely inhibits the stimulation of GLUT4 translocation by insulin(10). Here we show that phosphorylated Cbl recruits the CrkII-C3G complex to lipid rafts, where C3G specifically activates the small GTP-binding protein TC10. This process is independent of PI(3)K, but requires the translocation of Cbl, Crk and C3G to the lipid raft. The activation of TC10 is essential for insulin-stimulated glucose uptake and GLUT4 translocation. The TC10 pathway functions in parallel with PI(3)K to stimulate fully GLUT4 translocation in response to insulin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62864/1/410944a0.pd

    Climatic and Topographic Control of the Stable Isotope Values of Rivers on the South Island of New Zealand

    Get PDF
    We show that climate and topography control the spatial distribution of stable isotope values on the South Island of New Zealand, based on a spatially dense (n = 193) river isotopic survey. Our data show a ÎŽ O minimum in isotope values east of the Southern Alps that demonstrates topographically driven continentality associated with the Southern Alps, which intersect the prevailing, moisture-laden westerlies. Our data define a South Island surface water line of ÎŽ H = 8.17 (±0.26) × ÎŽ O + 10.57 (±2.04), which is identical within 95% confidence intervals to the global and New Zealand meteoric water lines established from monthly precipitation samples. The observed river ÎŽ O values are strongly correlated with annual temperature range and winter temperature. Strongest correlations are between ÎŽ O and mean minimum winter temperatures (r \u3e 0.7 for June, July, August), with gradients of 0.58–0.66‰ /°C. Based on a multiple regression analysis of ÎŽ O against climate data, we present a river ÎŽ O model and isoscape that demonstrate the control of continentality and moisture source on New Zealand surface water isotope spatial patterns. Model validation against previously published river samples shows skill in predicting river ÎŽ O values (root-mean-square error = 0.83), confirming that the spatial variations in river ÎŽ O (and ÎŽ H) are robust to sampling period and reflect continental, precipitation source and temperature effects. Our data suggest that oxygen or hydrogen isotope paleoclimate proxies derived from rivers or open-system lakes on the South Island should be sensitive to winter temperature. 18 2 18 18 18 18 18 18 18

    The global burden attributable to low bone mineral density

    Get PDF
    Introduction: The Global Burden of Disease Study 2010 estimated the worldwide health burden of 291 diseases and injuries and 67 risk factors by calculating disability-adjusted life years (DALYs). Osteoporosis was not considered as a disease, and bone mineral density (BMD) was analysed as a risk factor for fractures, which formed part of the health burden due to falls. Objectives: To calculate (1) the global distribution of BMD, (2) its population attributable fraction (PAF) for fractures and subsequently for falls, and (3) the number of DALYs due to BMD. Methods: A systematic review was performed seeking population-based studies in which BMD was measured by dual-energy X-ray absorptiometry at the femoral neck in people aged 50 years and over. Age- and sex-specific mean ± SD BMD values (g/cm2) were extracted from eligible studies. Comparative risk assessment methodology was used to calculate PAFs of BMD for fractures. The theoretical minimum risk exposure distribution was estimated as the age- and sex-specific 90th centile from the Third National Health and Nutrition Examination Survey (NHANES III). Relative risks of fractures were obtained from a previous meta-analysis. Hospital data were used to calculate the fraction of the health burden of falls that was due to fractures. Results: Global deaths and DALYs attributable to low BMD increased from 103 000 and 3 125 000 in 1990 to 188 000 and 5 216 000 in 2010, respectively. The percentage of low BMD in the total global burden almost doubled from 1990 (0.12%) to 2010 (0.21%). Around one-third of falls-related deaths were attributable to low BMD. Conclusions: Low BMD is responsible for a growing global health burden, only partially representative of the real burden of osteoporosis

    Maternal Perception of Reduced Fetal Movements Is Associated with Altered Placental Structure and Function

    Get PDF
    Maternal perception of reduced fetal movement (RFM) is associated with increased risk of stillbirth and fetal growth restriction (FGR). DFM is thought to represent fetal compensation to conserve energy due to insufficient oxygen and nutrient transfer resulting from placental insufficiency. To date there have been no studies of placental structure in cases of DFM.To determine whether maternal perception of reduced fetal movements (RFM) is associated with abnormalities in placental structure and function.Placentas were collected from women with RFM after 28 weeks gestation if delivery occurred within 1 week. Women with normal movements served as a control group. Placentas were weighed and photographs taken. Microscopic structure was evaluated by immunohistochemical staining and image analysis. System A amino acid transporter activity was measured as a marker of placental function. Placentas from all pregnancies with RFM (irrespective of outcome) had greater area with signs of infarction (3.5% vs. 0.6%; p<0.01), a higher density of syncytial knots (p<0.001) and greater proliferation index (p<0.01). Villous vascularity (p<0.001), trophoblast area (p<0.01) and system A activity (p<0.01) were decreased in placentas from RFM compared to controls irrespective of outcome of pregnancy.This study provides evidence of abnormal placental morphology and function in women with RFM and supports the proposition of a causal association between placental insufficiency and RFM. This suggests that women presenting with RFM require further investigation to identify those with placental insufficiency

    Implementing integrated measurements of essential biodiversity variables at a national scale

    Get PDF
    Funding: the Strategic Science Investment Funding for Crown Research Institutes from the Ministry of Business, Innovation and Employment.1. There is a global need for observation systems that deliver regular, timely data on state and trends in biodiversity, but few have been implemented, and fewer still at national scales. We describe the implementation of measurement of Essential Biodiversity Variables (EBVs) on an 8 km × 8 km grid throughout New Zealand, with multiple components of biodiversity (vegetation, birds, and some introduced mammals) measured simultaneously at each sample point. 2. Between 2011 and 2017, all public land was sampled nationally (ca. 1,350 points) and some private land (ca. 500 points). Synthetic appraisals of the state of New Zealand's biodiversity, not possible previously, can be derived from the first measurement of species distribution, population abundance, and taxonomic diversity EBVs. 3. Native bird counts (all species combined) were about 2.5 times greater per sample point in natural forests and shrublands than in non‐woody ecosystems, and native bird counts exceeded those of non‐native birds across all natural forests and shrublands. 4. Non‐native plants, birds, and mammals are invasive throughout, but high‐rainfall forested regions are least invaded, and historically deforested rain shadow regions are most invaded. 5. National reporting of terrestrial biodiversity across New Zealand's public land is established and becoming normalised, in the same manner as national and international reporting of human health and education statistics. The challenge is extending coverage across all private land. Repeated measurements of these EBVs, which began in 2017, will allow defensible estimates of biodiversity trends.Publisher PDFPeer reviewe

    Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    Get PDF
    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∌5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC1. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized2, 3, 4, 5, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins5, 6, and is therefore not well understood. Here, we show that stiffness topography7 with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy2, 3, 4, 5. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel

    Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio

    Get PDF
    Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P) at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP)-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglABd GTP-binding are conserved. Deletion of mglABd abolished prey-invasion, but not gliding, and reduced T4P formation. MglABd interacted with a previously uncharacterised tetratricopeptide repeat (TPR) domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomRBd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the “lone-hunter” Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio

    Spindle rotation in human cells is reliant on a MARK2-mediated equatorial spindle-centering mechanism

    Get PDF
    This work was supported by a Cancer Research UK Career Development Award (C28598/A9787), Biotechnology and Biological Sciences Research Council Project grant (BB/R01003X/1), and a Queen Mary University of London Laboratory startup grant to V.M. Draviam, a Universiti Brunei Darussalam PhD studentship to I. Zulkipli, a Queen Mary University of London PhD studentship to M. Hart, a London Interdisciplinary Biosciences Consortium Biotechnology and Biological Sciences Research Council–Doctoral Training Partnerships PhD studentship to D. Dang (cosupervised by V.M. Draviam and N. Sastry; BB/M009513/1), and an Islamic Development Bank PhD studentship to P. Gul

    Active nuclear import and cytoplasmic retention of activation-induced deaminase

    Full text link
    The enzyme activation-induced deaminase (AID) triggers antibody diversification in B cells by catalyzing deamination and consequently mutation of immunoglobulin genes. To minimize off-target deamination, AID is restrained by several regulatory mechanisms including nuclear exclusion, thought to be mediated exclusively by active nuclear export. Here we identify two other mechanisms involved in controlling AID subcellular localization. AID is unable to passively diffuse into the nucleus, despite its small size, and its nuclear entry requires active import mediated by a conformational nuclear localization signal. We also identify in its C terminus a determinant for AID cytoplasmic retention, which hampers diffusion to the nucleus, competes with nuclear import and is crucial for maintaining the predominantly cytoplasmic localization of AID in steady-state conditions. Blocking nuclear import alters the balance between these processes in favor of cytoplasmic retention, resulting in reduced isotype class switching.This work was supported by the Canadian Institutes of Health Research (MOP 84543) and a Canada Research Chair (to J.M.D.). A.O. was supported by a fellowship from the Canadian Institutes of Health Research Cancer Training Program at the IRCM. V.A.C. was supported in part by a Michel Saucier fellowship from the Louis-Pasteur Canadian Fund through the University of Montreal
    • 

    corecore