889 research outputs found

    In vitro evaluation of bacteriocinlike inhibitory substances produced by lactic acid bacteria isolated during traditional sicilian cheese making

    Get PDF
    Bacteriocins are antimicrobial proteins produced by bacteria that inhibit the growth of other bacteria with a bactericidal or bacteriostatic mode of action. Many lactic acid bacteria (LAB) produce a high diversity of different bacteriocins. Bacteriocinogenic LAB are generally recognised as safe (GRAS) and useful to control the frequent development of pathogens and spoilage microorganisms. For this reason they are commonly used as starter cultures in food fermentations. In this study, the authors describe the results of a screening on 699 LAB isolated from wooden vat surfaces, raw milk and traditional Sicilian cheeses, for the production of bacteriocin-like inhibitory substances, by comparing two alternative methods. The antagonistic activity of LAB and its proteinaceous nature were evaluated using the spot-on-thelawn and the well-diffusion assay (WDA) and the sensitivity to proteolytic (proteinase K, protease B and trypsin), amylolytic (a-amylase) and lipolytic (lipase) enzymes. The indicator strains used were: Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis. A total of 223 strains (belonging to the species Enterococcus spp., Lactobacillus spp., Pediococcus spp., Streptococcus spp., Leuconostoc spp. and Lactococcus lactis) were found to inhibit the growth of Listeria monocytogenes by using the spot-on-the-lawn method; only 37 of these were confirmed by using the WDA. The direct addition of bacteriocin-producing cultures into dairy products can be a more practical and economic option for the improvement of the safety and quality of the final product

    Bionics-based surgical training using 3D printed photopolymers and smart devices

    Get PDF
    Additive manufacturing technologies support the realization of surgical training devices using, typically, photopolymers-based materials. Unfortunately, the material jetting family, able to print a large range of soft and hard polymers, requires expensive machines and materials, which are not always available. On the other hand, vat polymerization fails in the resolution/volume ratio and in the mechanical properties reconstruction. Stereolithographic 3D printers, mostly used in dental surgery, make possible to realize cheap and sustainable models for training activity using only one material, reducing the possibility to obtain different mechanical characteristics. Moreover, the printed objects have to be treated (i.e. curing post-processing) in order to obtain the required performances, that could be preserved for long term storing. The aim of the proposed approach is to assure the surgeons' skills improvement through bionic-based surgical 3D printed models and smart devices, able to reproduce the same perception of a real surgical activity. We demonstrated how it is possible develop smart devices capable to take into account the same characteristics of different materials (i.e. bone and spongy bone) even if stored for a long time

    Alkaline phosphatase survey in pecorino siciliano PDO cheese

    Get PDF
    The determination of alkaline phosphatase (ALP) in cheeses has become an official method for controlling cheeses with a protected designation of origin (PDO), all of which use raw milk. PDO cheeses, characterized by high craftsmanship, usually have an uneven quality. However, for these cheeses, it is necessary to establish ALP values so that they can be defined as a raw milk product. In this study, a dataset with Pecorino Siciliano PDO samples was analyzed to determine ALP both at the core and under the rind. The results showed that there was no significant difference between the different zones in Pecorino cheese. A second dataset of 100 pecorino cheese samples determined that ALP was only at the core of the cheese. Moreover, there was a statistically significant difference between the ALP values of cheeses produced with raw milk and those produced with pasteurized milk. Furthermore, according to the temperatures, a wide variability of ALP values was observed in the Pecorino Siciliano PDO samples from the core of the cheeses. This was a result of several under scotta whey cooking methodologies adopted by cheesemakers, which do not permit a clear range. Therefore, further investigation is desirable

    Phenotypic and genotypic study on antibiotic resistance and pathogenic factors of staphylococcus aureus isolates from small ruminant mastitis milk in south of italy (Sicily)

    Get PDF
    Staphyloccoccus aureus is the major cause of mastitis in small ruminants in the Mediterranean farms causing severe losses to dairy industry. Antibiotic treatment has been the most common approach to control these infections. Aim of this study was to investigate antimicrobial resistance (AMR), virulence factors and biofilm-related genes of 84 Sicilian strains of S. aureus isolated from sheep and goats milk during two different periods ÎŽT1 (2006-2009) and ÎŽT2 (2013-2015). Kirby Bauer method and Polymerase Chain Reaction (PCR) were utilized to monitor AMR and related genes (mecA, tetK, tetM, ermA, ermC). Moreover, toxin genes (tsst-1, sea-see, seg-sej, and sep) and biofilm genes (bap, ica, sasC) were studied. Twenty-six isolates (30.9%) showed multidrug resistance. The two groups showed similar results with exception for higher values of resistance for tilmicosin and lower for sulfamethoxazole and vancomycin of the second group. MecA gene was detected in one isolate. Tetracycline resistance was higher than 20%, with an increase in ÎŽT2 group. Toxin genes were found in 5 isolates (5.9%), belonging of ÎŽT2 group, while 57 of isolates (67.8%) showed biofilm related genes. The high presence of multi-resistant isolates suggests the need of more responsible use of antibiotic therapy for the control of these infections

    Anti-Listeria activity of lactic acid bacteria in two traditional Sicilian cheeses

    Get PDF
    Listeria monocytogenes is a pathogen frequently found in dairy products, and its growth is difficult to control. Bacteriocin-like inhibitory substances (BLIS), produced by lactic acid bacteria (LAB), having proven in vitro anti-Listeria activity, could provide an innovative approach to control L. monocytogenes; however, this application needs to be evaluated in vivo. In this study, twenty LAB strains isolated from different Sicilian dairy environments were tested for control of growth of L. monocytogenes in three different experimental trials. First, raw and UHT milk were inoculated with LAB strains alone, and LAB strains mixed with L. monocytogenes. Second, mini-cheeses containing LAB and/or L. monocytogenes were produced. Third, two traditional Sicilian cheeses inoculated with a multi-strain LAB mixture combined with L. monocytogenes were produced. The addition of BLIS produced by LAB to milk and in mini-cheese production was unable to inhibit the growth of L. monocytogenes. However, an anti-Listeria effect was observed in the Pecorino Siciliano cheeses, where, after 15 days of ripening, the cheeses with added LAB had fewer L. monocytogenes compared to the control cheeses with no added LAB, while in the Vastedda della valle del Bel\uecce cheeses, the multi-strain LAB mixture completely prevented the growth of L. monocytogenes

    Preparation of human primary macrophages to study the polarization from monocyte-derived macrophages to pro- or anti-inflammatory macrophages at biomaterial interface in vitro

    Get PDF
    Background/purpose: Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper in vitro models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials. The goal of the present work is to present and validate an innovative protocol to obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomaterials without altering their viability and phenotype. Materials and methods: We differentiated MDMs on ultra-low attachment tissue culture plastics and recovered them with specific detachment solution in order to be reseeded on a secondary substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence) we compared their phenotype to MDMs differentiated on standard culture plates. Results: Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages. Conclusion: These data provide the dental material research community the unprecedented possibility to investigate the immunomodulatory properties of biomaterials for dental application

    Representation of visual gravitational motion in the human vestibular cortex

    Get PDF
    How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain

    3D printed masks for powders and viruses safety protection using food grade polymers: Empirical tests

    Get PDF
    The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS‐COV‐ 2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet‐based precision extrusion deposition (db‐PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home‐grade printing equipment have similar performances compared to the industrial‐grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post‐processing phases essential to assure human safety in the production of 3D printed custom medical devices
    • 

    corecore