11 research outputs found
Recommended from our members
2d-Material Dispersion and Printing: From Laboratory to Commercial Scale
Functional printing is a low-cost, high-throughput method of production. Incorporating two-dimensional (2d)-materials into inks suited for mature printing techniques has emerged as a viable method for cost-effective and large-scale device fabrication. Many demonstrations are conducted on a small scale, but successful upscaling that would enable the ubiquitous uptake of printing for fabrication, has seldom been reported. The ability to produce 2d-materials dispersions on a large scale is required to be able to produce the volume of ink required to keep up with commercial-scale printing. When such a process is scaled up, the sustainability of the process becomes a such greater issue, with factors such as the type and amount of waste associated with the process considerably complicating its use on the large scale.
Since the first 2d-material printing in 2012, the majority of demonstrations are laboratoryscale inkjet printing, as it facilitates rapid prototyping and only requires a small volume of ink. Other printing techniques have been neglected despite their clear advantages such as high printing speed and throughput. The viability of 2d-material printing has seen demonstrated, with different applications explored, but there is a need to translate these methods to roll-toroll (R2R) systems more suited to commercial-scale printing. Largely, demonstrations have used conducting or semiconducting 2d-materials is there is less emphasis on the passive dielectric components of devices. Wide bandgap 2d-materials can be used for dielectric layers in printed electronics. Also, there are very few demonstrations of conformal printing on three-dimensional-objects, which can introduce functionality to otherwise inert surfaces.
My PhD first focuses on a means to exfoliate 2d-materials on a large scale by developing a simple, low-waste, and efficient method making it appealing for commercial-scale 2dmaterial ink formulation. I explore possible applications of different 2d-materials, utilising the advantages of small-scale printing techniques. I move on to medium-scale techniques, first through the development of a dielectric ink, enhanced through the addition of a 2d-material nanofiller, deposited using k-bar coating. I then formulate a conductive graphene screen printing ink and use it to print patterns on a sacrificial layer to allow water-assisted conformal printing on 3d-objects. I turn my attention to large-scale, R2R printing of 2d-material ink. I present a commercial-scale flexographic printing demonstration of a graphene-enhanced ink at 100 m.min−1. This is followed by the development of a R2R system, to fully print a perovskite solar cell. This concludes my doctoral research with a through line ranging from small, laboratory-scale through to large, commercial-scale 2d-material device fabrication.EPSR
Recommended from our members
Printable Perovskite Diodes for Broad-Spectrum Multienergy X-Ray Detection.
Multienergy X-ray detection is critical to effectively differentiate materials in a variety of diagnostic radiology and nondestructive testing applications. Silicon and selenium X-ray detectors are the most common for multienergy detection; however, these present poor energy discrimination across the broad X-ray spectrum and exhibit limited spatial resolution due to the high thicknesses required for radiation attenuation. Here, an X-ray detector based on solution-processed thin-film metal halide perovskite that overcomes these challenges is introduced. By harnessing an optimized n-i-p diode configuration, operation is achieved across a broad range of soft and hard X-ray energies stemming from 0.1 to 10's of keV. Through detailed experimental and simulation work, it is shown that optimized Cs0.1 FA0.9 PbI3 perovskites effectively attenuate soft and hard X-rays, while also possessing excellent electrical properties to result in X-ray detectors with high sensitivity factors that exceed 5 × 103 µ C G y Vac - 1 cm - 2 and 6 × 104 µC Gy-1 cm-2 within soft and hard X-ray regimes, respectively. Harnessing the solution-processable nature of the perovskites, roll-to-roll printable X-ray detectors on flexible substrates are also demonstrated
100 m min⁻¹ industrial-scale flexographic printing of graphene-incorporated conductive ink
Flexographic printing is promising for large-area electronics due to high print-speed and roll-to-roll capability. There have been recent attempts in using graphene as an active pigment in inks, most notably for slower techniques such as inkjet and screen printing. However, formulation of graphene-enhanced inks for high-speed printing and its effect on key metrics have never been investigated. Herein, graphene nanoplatelets (GPs) are incorporated to a conductive flexographic ink without compromising the rheological properties. An industrial scale at 100 m min−1 is printed on paper and polyethylene terephthalate (PET) substrates using a commercial flexographic press, and statistical performance variations are investigated across entire print runs. It is shown that GP-incorporation improves sheet-resistance (Rs) and uniformity, with up to 54% improvement in average Rs and 45% improvement in the standard-deviation on PET. The adhesion on both the substrates improves with GP-incorporation, as verified by tape/crosshatch tests. The durability of GP-enhanced samples is probed with a 1000 cyclic bend-test, with 0.31% average variation in resistance in the flat state on PET between the first and last 100 bends, exhibiting a robust print. The statistically scalable results show that GP-incorporation offers a cost-performance advantage for flexographic printing of large-area conductive patterns without modifications to traditional high-speed graphics printing presses.Published versionWe acknowledge funding from the Engineering and Physical Sciences Research Council (EP/L016087/1) and Alphasense Limited in United Kingdom
Printable perovskite diodes for broad-spectrum multienergy X-Ray detection
Multienergy X-ray detection is critical to effectively differentiate materials in a variety of diagnostic radiology and nondestructive testing applications. Silicon and selenium X-ray detectors are the most common for multienergy detection; however, these present poor energy discrimination across the broad X-ray spectrum and exhibit limited spatial resolution due to the high thicknesses required for radiation attenuation. Here, an X-ray detector based on solution-processed thin-film metal halide perovskite that overcomes these challenges is introduced. By harnessing an optimized n-i-p diode configuration, operation is achieved across a broad range of soft and hard X-ray energies stemming from 0.1 to 10's of keV. Through detailed experimental and simulation work, it is shown that optimized Cs0.1 FA0.9 PbI3 perovskites effectively attenuate soft and hard X-rays, while also possessing excellent electrical properties to result in X-ray detectors with high sensitivity factors that exceed 5 × 103 µC GyVac-1 cm-2 and 6 × 104 µC Gy-1 cm-2 within soft and hard X-ray regimes, respectively. Harnessing the solution-processable nature of the perovskites, roll-to-roll printable X-ray detectors on flexible substrates are also demonstrated.Published versionB.S. acknowledges funding support through Australian Synchrotron under reference number AS221/SXR/18131. J.J. acknowledges funding support through the Australian Research Council under Grant CE170100026 and the Australian-China Science and Research Fund Joint Research Centre for Flexible Graphene Electronics. N.M. and T.H. acknowledge funding from EPSRC (EP/L016087/1)
Recommended from our members
The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions
The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1,600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W-1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions.ARENA grant: 2017/RND01
Recommended from our members
The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions
Acknowledgements: This work was funded predominantly by the Australian Renewable Energy Agency (ARENA) (grant no. 2017/RND012). This work was also supported by the Australian Centre for Advanced Photovoltaics (ACAP) programme funded by the Australian Government through ARENA, the Australian Research Council Center of Excellence in Exciton Science (grant no. CE170100026), Australia-India Strategic Research Fund (AISRF) (grant no. AISRF75426), L.W.T.N. acknowledges a Nanyang Technological University (NTU) College of Engineering International Postdoctoral Fellowship. The authors acknowledge the assistance received from Dr Aaron Seeber with the analysis and interpretation of XRD results and CSIRO Manufacturing’s Materials Characterisation and Modelling (MCM) team for SEM.Funder: Australia-India Strategic Research Fund (AISRF) - CE170100026AbstractThe rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W−1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions.</jats:p
Recommended from our members
The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions.
The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W-1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions.ARENA grant: 2017/RND01
The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions
Abstract The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W−1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions
Recommended from our members
The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions
Acknowledgements: This work was funded predominantly by the Australian Renewable Energy Agency (ARENA) (grant no. 2017/RND012). This work was also supported by the Australian Centre for Advanced Photovoltaics (ACAP) programme funded by the Australian Government through ARENA, the Australian Research Council Center of Excellence in Exciton Science (grant no. CE170100026), Australia-India Strategic Research Fund (AISRF) (grant no. AISRF75426), L.W.T.N. acknowledges a Nanyang Technological University (NTU) College of Engineering International Postdoctoral Fellowship. The authors acknowledge the assistance received from Dr Aaron Seeber with the analysis and interpretation of XRD results and CSIRO Manufacturing’s Materials Characterisation and Modelling (MCM) team for SEM.Funder: Australia-India Strategic Research Fund (AISRF) - CE170100026The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W−1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions
Recommended from our members
The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions
Acknowledgements: This work was funded predominantly by the Australian Renewable Energy Agency (ARENA) (grant no. 2017/RND012). This work was also supported by the Australian Centre for Advanced Photovoltaics (ACAP) programme funded by the Australian Government through ARENA, the Australian Research Council Center of Excellence in Exciton Science (grant no. CE170100026), Australia-India Strategic Research Fund (AISRF) (grant no. AISRF75426), L.W.T.N. acknowledges a Nanyang Technological University (NTU) College of Engineering International Postdoctoral Fellowship. The authors acknowledge the assistance received from Dr Aaron Seeber with the analysis and interpretation of XRD results and CSIRO Manufacturing’s Materials Characterisation and Modelling (MCM) team for SEM.Funder: Australia-India Strategic Research Fund (AISRF) - CE170100026The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W−1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions