4 research outputs found

    Relativistic photography with a wide aperture

    Get PDF
    We discuss new effects related to relativistic aberration, which is the apparent distortion of objects moving at relativistic speeds relative to an idealized camera. Our analysis assumes that the camera lens is capable of stigmatic imaging of objects at rest with respect to the camera, and that each point on the shutter surface is transparent for one instant, but different points are not necessarily transparent synchronously. We pay special attention to the placement of the shutter. First, we find that a wide aperture requires the shutter to be placed in the detector plane to enable stigmatic images. Second, a Lorentz-transformation window [Proc. SPIE 9193, 91931K (2014) [CrossRef] ] can correct for relativistic distortion. We illustrate our results, which are significant for future spaceships, with raytracing simulations

    Photography at relativistic speeds

    No full text
    In a photo taken with a camera moving at relativistic speed, the world appears distorted. That much has long been clear, but the details of the distortion were slow to emerge correctly. We recently added relativistic raytracing capability to our custom raytracer, Dr TIM, resulting in unique combinations of capabilities. Here we discuss a few observations. In particular, photos can be sharp only if the shutter is placed correctly. A hypothetical window that changes light-ray direction like a change of inertial frame, when combined with suitable shutter placement, can correct for all relativistic-aberration effects

    Photography at relativistic speeds

    Get PDF
    In a photo taken with a camera moving at relativistic speed, the world appears distorted. That much has long been clear, but the details of the distortion were slow to emerge correctly. We recently added relativistic raytracing capability to our custom raytracer, Dr TIM, resulting in unique combinations of capabilities. Here we discuss a few observations. In particular, photos can be sharp only if the shutter is placed correctly. A hypothetical window that changes light-ray direction like a change of inertial frame, when combined with suitable shutter placement, can correct for all relativistic-aberration effects
    corecore