196 research outputs found

    The bactericidal activity of glutaraldehyde-impregnated polyurethane

    Get PDF
    Although glutaraldehyde is known to be bactericidal in solution, its potential use to create novel antibacterial polymers suitable for use in healthcare environments has not been evaluated. Here, novel materials were prepared in which glutaraldehyde was either incorporated into polyurethane using a simple “swell-encapsulation-shrink” method (hereafter referred to as “glutaraldehyde-impregnated polyurethane”), or simply applied to the polymer surface (hereafter referred to as “glutaraldehyde-coated polyurethane”). The antibacterial activity of glutaraldehyde-impregnated and glutaraldehyde-coated polyurethane samples was tested against Escherichia coli and Staphylococcus aureus. Glutaraldehyde-impregnated polyurethane resulted in a 99.9% reduction in the numbers of E. coli within 2 h and a similar reduction of S. aureus within 1 h, whereas only a minimal reduction in bacterial numbers was observed when the biocide was bound to the polymer surface. After 15 days, however, the bactericidal activity of the impregnated material was substantially reduced presumably due to polymerization of glutaraldehyde. Thus, although glutaraldehyde retains antibacterial activity when impregnated into polyurethane, activity is not maintained for extended periods of time. Future work should examine the potential of chemical modification of glutaraldehyde and/or polyurethane to improve the useful lifespan of this novel antibacterial polymer

    Conjugatable water-soluble Pt(ii) and Pd(ii) porphyrin complexes: Novel nano- and molecular probes for optical oxygen tension measurement in tissue engineering

    Get PDF
    Measurement of oxygen tension in compressed collagen sheets was performed using matrix-embedded optical oxygen sensors based on platinum(II) and palladium(II) porphyrins supported on polyacrylamide nanoparticles. Bespoke, fully water-soluble, mono-functionalised Pt(II) and Pd(II) porphyrin complexes designed for conjugation under mild conditions were obtained using microwave-assisted metallation. The new sensors display a linear response (1/τ vs. O₂) to varying oxygen tension over a biologically relevant range (7.0 × 10⁻⁴ to 2.7 × 10⁻¹ mM) in aqueous solutions; a behaviour that is maintained following conjugation to polyacrylamide nanoparticles, and following embedding of the nanosensors in compressed collagen sheets, paving the way to innovative approaches for real-time resolution of oxygen gradients throughout 3D matrices useful for tissue regeneration

    Renormalized Vacuum Polarization and Stress Tensor on the Horizon of a Schwarzschild Black Hole Threaded by a Cosmic String

    Full text link
    We calculate the renormalized vacuum polarization and stress tensor for a massless, arbitrarily coupled scalar field in the Hartle-Hawking vacuum state on the horizon of a Schwarzschild black hole threaded by an infinte straight cosmic string. This calculation relies on a generalized Heine identity for non-integer Legendre functions which we derive without using specific properties of the Legendre functions themselves.Comment: This is an expanded version of a previous submission, we have added the calculation of the stress tensor. 28 pages, 7 figure

    Conductance Phases in Aharonov-Bohm Ring Quantum Dots

    Full text link
    The regimes of growing phases (for electron numbers N~0-8) that pass into regions of self-returning phases (for N>8), found recently in quantum dot conductances by the Weizmann group are accounted for by an elementary Green function formalism, appropriate to an equi-spaced ladder structure (with at least three rungs) of electronic levels in the quantum dot. The key features of the theory are physically a dissipation rate that increases linearly with the level number (and tentatively linked to coupling to longitudinal optical phonons) and a set of Fano-like meta-stable levels, which disturb the unitarity, and mathematically the change over of the position of the complex transmission amplitude-zeros from the upper-half in the complex gap-voltage plane to the lower half of that plane. The two regimes are identified with (respectively) the Blaschke-term and the Kramers-Kronig integral term in the theory of complex variables.Comment: 20 pages, 4 figure

    Therapeutic enhancement of a cytotoxic agent using Photochemical internalisation in 3D compressed collagen constructs of ovarian cancer

    Get PDF
    Photochemical internalisation (PCI) is a method for enhancing delivery of drugs to their intracellular target sites of action. In this study we investigated the efficacy of PCI using a porphyrin photosensitiser and a cytotoxic agent on spheroid and non-spheroid compressed collagen 3D constructs of ovarian cancer versus conventional 2D culture. The therapeutic responses of two human carcinoma cell lines (SKOV3 and HEY) were compared using a range of assays including optical imaging. The treatment was shown to be effective in non-spheroid constructs of both cell lines causing a significant and synergistic reduction in cell viability measured at 48 or 96 hours post-illumination. In the larger spheroid constructs, PCI was still effective but required higher saporin and photosensitiser doses. Moreover, in contrast to the 2D and non-spheroid experiments, where comparable efficacy was found for the two cell lines, HEY spheroid constructs were found to be more susceptible to PCI and a lower dose of saporin could be used. PCI treatment was observed to induce death principally by apoptosis in the 3D constructs compared to the mostly necrotic cell death caused by PDT. At low oxygen levels (1%) both PDT and PCI were significantly less effective in the constructs
    corecore