196 research outputs found
Recommended from our members
Assessing the Effect of Photodynamic Therapy on Peripheral Nerve and Cancer Cells Using a Thin Tissue Engineered Collagen Culture Model
Abstract not available
Recommended from our members
Intracellular localisation of mTHPC and effect of photodynamic therapy in cells of the mammalian peripheral nervous system
Fewer nerve-related side effects have been noted after treating head and neck cancer with photodynamic therapy (PDT) compared to conventional cancer therapy. Our aim is to investigate the biological basis for any such nerve-sparing effect. In this study the intracellular localisation and effect on cell viability of the photosensitiser meta-tetrahydroxylphenylchlorin (mTHPC) was investigated in cell culture models using peripheral nerve cells.
Primary cells from adult rat dorsal root ganglia (containing both neurons and glia) were used in these experiments. Localisation of mTHPC was detected using fluorescence and confocal microscopy. Levels of mTHPC fluorescence were quantified using digital image analysis. Immunocytochemistry with anti-?-III-tubulin and anti-S100 was used to distinguish neuronal and glial cell populations respectively. A cell-death assay using propidium iodide was used to evaluate neural cell susceptibility to PDT following incubation with mTHPC.
The results showed that mTHPC was localised in cytoplasmic regions of neurons and glia, but was not detected in neuronal axons. Necrotic cell death was detected after PDT in these neural cell types.
These results suggest that the cells of the peripheral nervous system are susceptible to PDT-mediated necrosis, but that the sparing of nerves observed during clinical PDT may be related to the heterogeneous distribution of mTHPC within neurons
Recommended from our members
Differences in sensitivity to mTHPC-mediated photodynamic therapy of neurons, glial cells and MCF7 cells in a 3-dimensional cell culture model
The effect of photodynamic therapy (PDT) on the cells of the nervous system is an important consideration in the treatment of tumours that are located within or adjacent to the brain, spinal cord and peripheral nerves. Previous studies have reported the sparing of nerves during PDT using meta-tetrahydroxyphenylchlorin (mTHPC, Foscan®) in patients and in animal models. The aim of this study was to investigate the effects of mTHPC on key nervous system cells using a 3-dimensional cell culture system for the accurate detection of differences in sensitivity
The bactericidal activity of glutaraldehyde-impregnated polyurethane
Although glutaraldehyde is known to be bactericidal in solution, its potential use to create novel antibacterial polymers suitable for use in healthcare environments has not been evaluated. Here, novel materials were prepared in which glutaraldehyde was either incorporated into polyurethane using a simple “swell-encapsulation-shrink” method (hereafter referred to as “glutaraldehyde-impregnated polyurethane”), or simply applied to the polymer surface (hereafter referred to as “glutaraldehyde-coated polyurethane”). The antibacterial activity of glutaraldehyde-impregnated and glutaraldehyde-coated polyurethane samples was tested against Escherichia coli and Staphylococcus aureus. Glutaraldehyde-impregnated polyurethane resulted in a 99.9% reduction in the numbers of E. coli within 2 h and a similar reduction of S. aureus within 1 h, whereas only a minimal reduction in bacterial numbers was observed when the biocide was bound to the polymer surface. After 15 days, however, the bactericidal activity of the impregnated material was substantially reduced presumably due to polymerization of glutaraldehyde. Thus, although glutaraldehyde retains antibacterial activity when impregnated into polyurethane, activity is not maintained for extended periods of time. Future work should examine the potential of chemical modification of glutaraldehyde and/or polyurethane to improve the useful lifespan of this novel antibacterial polymer
Conjugatable water-soluble Pt(ii) and Pd(ii) porphyrin complexes: Novel nano- and molecular probes for optical oxygen tension measurement in tissue engineering
Measurement of oxygen tension in compressed collagen sheets was performed using matrix-embedded optical oxygen sensors based on platinum(II) and palladium(II) porphyrins supported on polyacrylamide nanoparticles. Bespoke, fully water-soluble, mono-functionalised Pt(II) and Pd(II) porphyrin complexes designed for conjugation under mild conditions were obtained using microwave-assisted metallation. The new sensors display a linear response (1/τ vs. O₂) to varying oxygen tension over a biologically relevant range (7.0 × 10⁻⁴ to 2.7 × 10⁻¹ mM) in aqueous solutions; a behaviour that is maintained following conjugation to polyacrylamide nanoparticles, and following embedding of the nanosensors in compressed collagen sheets, paving the way to innovative approaches for real-time resolution of oxygen gradients throughout 3D matrices useful for tissue regeneration
Renormalized Vacuum Polarization and Stress Tensor on the Horizon of a Schwarzschild Black Hole Threaded by a Cosmic String
We calculate the renormalized vacuum polarization and stress tensor for a
massless, arbitrarily coupled scalar field in the Hartle-Hawking vacuum state
on the horizon of a Schwarzschild black hole threaded by an infinte straight
cosmic string. This calculation relies on a generalized Heine identity for
non-integer Legendre functions which we derive without using specific
properties of the Legendre functions themselves.Comment: This is an expanded version of a previous submission, we have added
the calculation of the stress tensor. 28 pages, 7 figure
Recommended from our members
Potentiation of AlPcS<sub>2</sub> mediated photodynamic therapy by energy metabolism inhibitors in human tumour cell lines
Conductance Phases in Aharonov-Bohm Ring Quantum Dots
The regimes of growing phases (for electron numbers N~0-8) that pass into
regions of self-returning phases (for N>8), found recently in quantum dot
conductances by the Weizmann group are accounted for by an elementary Green
function formalism, appropriate to an equi-spaced ladder structure (with at
least three rungs) of electronic levels in the quantum dot. The key features of
the theory are physically a dissipation rate that increases linearly with the
level number (and tentatively linked to coupling to longitudinal optical
phonons) and a set of Fano-like meta-stable levels, which disturb the
unitarity, and mathematically the change over of the position of the complex
transmission amplitude-zeros from the upper-half in the complex gap-voltage
plane to the lower half of that plane. The two regimes are identified with
(respectively) the Blaschke-term and the Kramers-Kronig integral term in the
theory of complex variables.Comment: 20 pages, 4 figure
Therapeutic enhancement of a cytotoxic agent using Photochemical internalisation in 3D compressed collagen constructs of ovarian cancer
Photochemical internalisation (PCI) is a method for enhancing delivery of drugs to their intracellular target sites of action. In this study we investigated the efficacy of PCI using a porphyrin photosensitiser and a cytotoxic agent on spheroid and non-spheroid compressed collagen 3D constructs of ovarian cancer versus conventional 2D culture. The therapeutic responses of two human carcinoma cell lines (SKOV3 and HEY) were compared using a range of assays including optical imaging. The treatment was shown to be effective in non-spheroid constructs of both cell lines causing a significant and synergistic reduction in cell viability measured at 48 or 96 hours post-illumination. In the larger spheroid constructs, PCI was still effective but required higher saporin and photosensitiser doses. Moreover, in contrast to the 2D and non-spheroid experiments, where comparable efficacy was found for the two cell lines, HEY spheroid constructs were found to be more susceptible to PCI and a lower dose of saporin could be used. PCI treatment was observed to induce death principally by apoptosis in the 3D constructs compared to the mostly necrotic cell death caused by PDT. At low oxygen levels (1%) both PDT and PCI were significantly less effective in the constructs
- …