78 research outputs found

    Comparative floral presentation and bee-pollination in two Sprengelia species (Ericaceae)

    No full text
    Pollination by sonication is unusual in the Styphelioideae, family Ericaceae. Sprengelia incarnata and Sprengelia propinqua have floral characteristics that suggested they might be adapted to buzz pollination. Both species have florally similar nectarless flowers except that the stamens of Sprengelia propinqua spread widely after the flower opens, while those of Sprengelia incarnata cohere in the centre of the flower. To test whether sonication occurs, we observed bee behaviour at the flowers of both plant species, documented potential pollinators, and examined their floral and pollen attributes. We found that Sprengelia incarnata had smaller and drier pollen than Sprengelia propinqua. We found that Sprengelia incarnata was sonicated by native bees in the families Apidae (Exoneura), Halictidae (Lasioglossum) and Colletidae (Leioproctus, Euryglossa). Sprengelia propinqua was also visited by bees from the Apidae (Exoneura) and Halictidae (Lasioglossum), but pollen was collected by scraping. The introduced Apis mellifera (Apidae) foraged at Sprengelia propinqua but ignored Sprengelia incarnata. The two Sprengelia species shared some genera of potential pollinators, but appeared to have diverged enough in their floral and pollen characters to elicit different behaviours from the native and introduced bees

    Effect of airplane transport of donor livers on post-liver transplantation survival

    Get PDF
    Aim: To evaluate the effect of long haul airplane transport of donor livers on post-transplant outcomes. Methods: A retrospective cohort study of patients who received a liver transplantation was performed in Perth, Australia from 1992 to 2012. Donor and recipient characteristics information were extracted from Western Australian liver transplantation service database. Patients were followed up for a mean of six years. Patient and graft survival were evaluated and compared between patients who received a local donor liver and those who received an airplane transported donor liver. Predictors of survival were determined by univariate and multivariate analysis using cox regression. Results: One hundred and ninety-three patients received a local donor liver and 93 patients received an airplane transported donor liver. Airplane transported livers had a significantly lower alanine transaminase (mean: 45 U/L vs 84 U/L, P = 0.035), higher donor risk index (mean: 1.88 vs 1.42, P \u3c 0.001) and longer cold ischemic time (CIT) (mean: 10.1 h vs 6.4 h, P \u3c 0.001). There was a weak correlation between CIT and transport distance (r 2 = 0.29, P \u3c 0.001). Mean follow up was six years and 93 patients had graft failure. Multivariate analysis found only airplane transport retained significance for graft loss (HR = 1.92, 95%CI: 1.16-3.17). One year graft survival was 0.88 for those with a local liver and was 0.71 for those with an airplane transported liver. One year graft loss was due to primary graft non-function or associated with preservation injury in 20.8% of recipients of an airplane transported liver compared with 4.6% in those with a local liver (P = 0.027). Conclusion: Airplane transport of donor livers was independently associated with reduced graft survival following liver transplantation

    Mechanisms underlying clinical efficacy of Angiotensin II type 2 receptor (AT(2)R) antagonist EMA401 in neuropathic pain: clinical tissue and in vitro studies

    Get PDF
    BACKGROUND: The clinical efficacy of the Angiotensin II (AngII) receptor AT(2)R antagonist EMA401, a novel peripherally-restricted analgesic, was reported recently in post-herpetic neuralgia. While previous studies have shown that AT(2)R is expressed by nociceptors in human DRG (hDRG), and that EMA401 inhibits capsaicin responses in cultured hDRG neurons, the expression and levels of its endogenous ligands AngII and AngIII in clinical neuropathic pain tissues, and their signalling pathways, require investigation. We have immunostained AngII, AT(2)R and the capsaicin receptor TRPV1 in control post-mortem and avulsion injured hDRG, control and injured human nerves, and in cultured hDRG neurons. AngII, AngIII, and Ang-(1-7) levels were quantified by ELISA. The in vitro effects of AngII, AT(2)R agonist C21, and Nerve growth factor (NGF) were measured on neurite lengths; AngII, NGF and EMA401 effects on expression of p38 and p42/44 MAPK were measured using quantitative immunofluorescence, and on capsaicin responses using calcium imaging. RESULTS: AngII immunostaining was observed in approximately 75% of small/medium diameter neurons in control (nΒ =Β 5) and avulsion injured (nΒ =Β 8) hDRG, but not large neurons i.e. similar to TRPV1. AngII was co-localised with AT(2)R and TRPV1 in hDRG and in vitro. AngII staining by image analysis showed no significant difference between control (nΒ =Β 12) and injured (nΒ =Β 13) human nerves. AngII levels by ELISA were also similar in control human nerves (4.09Β Β±Β 0.36Β pmol/g, nΒ =Β 31), injured nerves (3.99Β Β±Β 0.79Β pmol/g, nΒ =Β 7), and painful neuromas (3.43Β Β±Β 0.73Β pmol/g, nΒ =Β 12); AngIII and Ang-(1-7) levels were undetectable (<0.03 and 0.05Β pmol/g respectively). Neurite lengths were significantly increased in the presence of NGF, AngII and C21 in cultured DRG neurons. AngII and, as expected, NGF significantly increased signal intensity of p38 and p42/44 MAPK, which was reversed by EMA401. AngII mediated sensitization of capsaicin responses was not observed in the presence of MAP kinase inhibitor PD98059, and the kinase inhibitor staurosporine. CONCLUSION: The major AT(2)R ligand in human peripheral nerves is AngII, and its levels are maintained in injured nerves. EMA401 may act on paracrine/autocrine mechanisms at peripheral nerve terminals, or intracrine mechanisms, to reduce neuropathic pain signalling in AngII/NGF/TRPV1-convergent pathways

    Nociceptin/Orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons

    Get PDF
    The Nociceptin/Orphanin FQ peptide receptor (NOP), activated by its endogenous peptide ligand Nociceptin/Orphanin FQ (N/OFQ), exerts several effects including modulation of pain signalling. We have examined, for the first time, the tissue distribution of the NOP receptor in clinical visceral and somatic pain disorders by immunohistochemistry, and assessed functional effects of NOP and [micro] opioid receptor activation in cultured human and rat dorsal root ganglion (DRG) neurons. Quantification of NOP-positive nerve fibres within the bladder sub-urothelium revealed a remarkable several-fold increase in Detrusor Overactivity (p<0.0001) and Painful Bladder Syndrome patient specimens (p=0.0014), compared to controls. In post-mortem control human DRGs, 75-80% of small/medium neurons (<=50 [micro]m diameter) in the lumbar (somatic) and sacral (visceral) DRG were positive for NOP, and fewer large neurons; avulsion-injured cervical human DRG neurons showed similar numbers. NOP-immunoreactivity was significantly decreased in injured peripheral nerves (p=0.0004), and also in painful neuromas (p=0.025). Calcium imaging studies in cultured rat DRG neurons demonstrated dose-dependent inhibition of capsaicin responses in the presence of N/OFQ, with an IC50 of 8.6 pM. In cultured human DRG neurons, 32% inhibition of capsaicin responses was observed in the presence of 1 pM N/OFQ (p<0.001). The maximum inhibition of capsaicin responses was greater with N/OFQ than [mu]-opioid receptor agonist DAMGO. Our findings highlight the potential of NOP agonists, particularly in urinary bladder overactivity and pain syndromes. The regulation of NOP expression in visceral and somatic sensory neurons by target-derived neurotrophic factors deserves further study, and the efficacy of NOP selective agonists in clinical trials

    Ribavirin Enhances IFN-Ξ± Signalling and MxA Expression: A Novel Immune Modulation Mechanism during Treatment of HCV

    Get PDF
    The nucleoside analogue Ribavirin significantly increases patient response to IFN-Ξ± treatment of HCV, by directly inhibiting viral replication. Recent studies indicate that Ribavirin also regulates immunity and we propose that Ribavirin enhances specific interferon sensitive gene (ISG) expression by amplifying the IFN-Ξ±-JAK/STAT pathway. We found that IFN-Ξ±-induced STAT1 and STAT3 phosphorylation was increased in hepatocytes co-treated with Ribavirin and IFN-Ξ±, compared to IFN-Ξ± alone. Ribavirin specifically enhanced IFN-Ξ± induced mRNA and protein of the anti-viral mediator MxA, which co-localised with HCV core protein. These novel findings indicate for the first time that Ribavirin, in addition to its viral incorporation, also enhances IFN-Ξ±-JAK/STAT signalling, leading to a novel MxA-mediated immuno-modulatory mechanism that may enhance IFN-Ξ± anti-viral activity against HCV

    Envelope 2 protein phosphorylation sites S75 & 277 of hepatitis C virus genotype 1a and interferon resistance: A sequence alignment approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C is a major health problem affecting more than 200 million individuals in world including Pakistan. Current treatment regimen consisting of interferon alpha and ribavirin does not always succeed to eliminate virus completely from the patient's body.</p> <p>Results</p> <p>Interferon induced antiviral protein kinase R (PKR) has a role in the hepatitis C virus (HCV) treatment as dsRNA activated PKR has the capacity to phosphorylate the serine and threonine of E2 protein and dimerization viral RNA. E2 gene of hepatitis C virus (HCV) genotype 1 has an active role in IFN resistance. E2 protein inhibits and terminates the kinase activity of PKR by blocking it in protein synthesis and cell growth. This brings forward a possible relation of E2 and PKR through a mechanism via which HCV evades the antiviral effect of IFN.</p> <p>Conclusion</p> <p>A hybrid in-silico and wet laboratory approach of motif prediction, evolutionary and structural anlysis has pointed out serine 75 and 277 of the HCV E2 gene as a promising candidate for the serine phosphorylation. It is proposed that serine phosphorylation of HCV E2 gene has a significant role in interferon resistance.</p

    Primary biliary cirrhosis

    Get PDF
    Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9–10:1) with a prevalence of up to 1 in 1,000 women over 40Β years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13–15Β mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC

    Mycolactone mediated neurite degeneration and functional effects in cultured human and rat DRG neurons: mechanisms underlying hypoalgesia in Buruli Ulcer

    Get PDF
    Mycolactone is a polyketide toxin secreted by the mycobacterium Mycobacterium ulcerans, responsible for the extensive hypoalgesic skin lesions characteristic of patients with Buruli ulcer. A recent pre-clinical study proposed that mycolactone may produce analgesia via activation of the angiotensin II type 2 receptor (AT2R). In contrast, AT2R antagonist EMA401 has shown analgesic efficacy in animal models and clinical trials for neuropathic pain. We therefore investigated the morphological and functional effects of mycolactone in cultured human and rat dorsal root ganglia (DRG) neurons and the role of AT2R using EMA401. Primary sensory neurons were prepared from avulsed cervical human DRG and rat DRG; 24 h after plating, neurons were incubated for 24 to 96 h with synthetic mycolactone A/B, followed by immunostaining with antibodies to PGP9.5, Gap43, Ξ² tubulin, or Mitotracker dye staining. Acute functional effects were examined by measuring capsaicin responses with calcium imaging in DRG neuronal cultures treated with mycolactone.Morphological effects: Mycolactone-treated cultures showed dramatically reduced numbers of surviving neurons and non-neuronal cells, reduced Gap43 and Ξ² tubulin expression, degenerating neurites and reduced cell body diameter, compared with controls. Dose-related reduction of neurite length was observed in mycolactone-treated cultures. Mitochondria were distributed throughout the length of neurites and soma of control neurons, but clustered in the neurites and soma of mycolactone-treated neurons. Functional effects: Mycolactone-treated human and rat DRG neurons showed dose-related inhibition of capsaicin responses, which were reversed by calcineurin inhibitor cyclosporine and phosphodiesterase inhibitor 3-isobutyl-1-Methylxanthine, indicating involvement of cAMP/ATP reduction. The morphological and functional effects of mycolactone were not altered by Angiotensin II or AT2R antagonist EMA401.Mycolactone induces toxic effects in DRG neurons, leading to impaired nociceptor function, neurite degeneration, and cell death, resembling the cutaneous hypoalgesia and nerve damage in individuals with M. Ulcerans infection
    • …
    corecore