452 research outputs found

    Chemistry on the inside: green chemistry in mesoporous materials

    Get PDF
    An overview of the rapidly expanding area of tailored mesoporous solids is presented. The synthesis of a wide range of the materials is covered, both inorganically and organically modified. Their applications, in particular those relating to green chemistry, are also highlighted. Finally, potential future directions for these materials are discussed

    Post-polymerisation modification of bio-derived unsaturated polyester resins via Michael additions of 1,3-dicarbonyls

    Get PDF
    Post-polymerisation modification of α,β-unsaturated polyesters (UPEs) is useful to deliver polymers with tuneable properties and applications different from their parent backbone. Bio-derivable itaconate unsaturated polyesters, with a range of co-monomers, were modified via a heterogeneously catalysed microwave-assisted Michael addition of pendants, acetylacetone (Hacac) and dimethyl malonate (DMM), to the polymer backbones with very short reaction times. Differential scanning calorimetry analysis showed an increase in the glass-transition temperatures of most of the saturated polyesters considered. Solubility and complexation studies demonstrated metal chelating abilities of the acetylacetone pendant can be retained, even following tethering to a polyester backbone. Additionally, it is demonstrated for the first time that Michael addition with Hacac and DMM can be used to reverse Ordelt saturation, an unwanted side-reaction in the synthesis of UPEs

    Reducing strain fluctuations in quantum dot devices by gate-layer stacking

    Full text link
    Nanofabricated metal gate electrodes are commonly used to confine and control electrons in electrostatically defined quantum dots. However, these same gates impart a complicated strain geometry that affects the confinement potential and potentially impairs device functionality. Here we investigate strain-induced fluctuations of the potential energy in Si/SiGe heterostructures, caused by (i) lattice mismatch, (ii) materials-dependent thermal contraction, and (iii) deposition stress in the metal gates. By simulating different gate geometries, ranging from simple to realistically complicated, and including features like overlapping metal and oxide layers, we can explain most observed strain features. In particular, we show that strain-induced potential fluctuations can be suppressed by employing overlapping gates that cover the whole active region, when the oxide layers are thin. These results suggest that strain effects should not present a serious challenge to qubit uniformity when following simple design rules.Comment: 13 pages, 9 figure

    A single-molecule approach to ZnO defect studies: single photons and single defects

    Full text link
    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here we present confocal fluorescence measurements of individual defects in Al-doped ZnO nanoparticles and undoped ZnO sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range 560 - 720 nm and typically exhibits two broad spectral peaks separated by approximately 150 meV. The excited state lifetimes range from 1 - 13 ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.Comment: 33 pages, 7 figure
    • …
    corecore