72 research outputs found
The Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks
We present three-dimensional magnetohydrodynamic simulations of the nonlinear
evolution of the magnetorotational instability (MRI) with a non-zero Ohmic
resistivity. The properties of the saturated state depend on the initial
magnetic field configuration. In simulations with an initial uniform vertical
field, the MRI is able to support angular momentum transport even for large
resistivities through the quasi-periodic generation of axisymmetric radial
channel solutions rather than through the maintenance of anisotropic
turbulence. Simulations with zero net flux show that the angular momentum
transport and the amplitude of magnetic energy after saturation are
significantly reduced by finite resistivity, even at levels where the linear
modes are only slightly affected. This occurs at magnetic Reynolds numbers
expected in low, cool states of dwarf novae, these results suggest that finite
resistivity may account for the low and high angular momentum transport rates
inferred for these systems.Comment: 8 figures, accepted for publication in Ap
Knot in Cen A: Stochastic Magnetic Field for Diffusive Synchrotron Radiation?
The emission of relativistic electrons moving in the random and small-scale
magnetic field is presented by diffusive synchrotron radiation (DSR). In this
Letter, we revisit the perturbative treatment of DSR. We propose that random
and small-scale magnetic field might be generated by the turbulence. As an
example, multi-band radiation of the knot in Cen A comes from the electrons
with energy in the magnetic field of . The
multi-band spectrum of DSR is well determined by the feature of stochastic
magnetic field. These results put strong constraint to the models of particle
acceleration.Comment: accepted by ApJL, comments are welcom
- …
