98 research outputs found

    Increased fracture rate in women with breast cancer: a review of the hidden risk

    Get PDF
    Women with breast cancer, particularly individuals diagnosed at a relatively early age, have an increased incidence of fractures. Fractures can have serious clinical consequences including the need for major surgery, increased morbidity and mortality, increased cost of disease management, and reduced quality of life for patients. The primary cause of the increased fracture risk appears to be an accelerated decrease in bone mineral density (BMD) resulting from the loss of estrogenic signaling that occurs with most treatments for breast cancer, including aromatase inhibitors. However, factors other than BMD levels alone may influence treatment decisions to reduce fracture risk in this setting. Our purpose is to review current evidence for BMD loss and fracture risk during treatment for breast cancer and discuss pharmacologic means to reduce this risk.Journal ArticleResearch Support, Non-U.S. Gov'tReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe

    The role of vitamin D in pulmonary disease: COPD, asthma, infection, and cancer

    Get PDF
    The role of vitamin D (VitD) in calcium and bone homeostasis is well described. In the last years, it has been recognized that in addition to this classical function, VitD modulates a variety of processes and regulatory systems including host defense, inflammation, immunity, and repair. VitD deficiency appears to be frequent in industrialized countries. Especially patients with lung diseases have often low VitD serum levels. Epidemiological data indicate that low levels of serum VitD is associated with impaired pulmonary function, increased incidence of inflammatory, infectious or neoplastic diseases. Several lung diseases, all inflammatory in nature, may be related to activities of VitD including asthma, COPD and cancer. The exact mechanisms underlying these data are unknown, however, VitD appears to impact on the function of inflammatory and structural cells, including dendritic cells, lymphocytes, monocytes, and epithelial cells. This review summarizes the knowledge on the classical and newly discovered functions of VitD, the molecular and cellular mechanism of action and the available data on the relationship between lung disease and VitD status

    Brazilian Consensus on Photoprotection

    Full text link

    The Fine Page.

    No full text
    • 

    corecore