679 research outputs found

    Superconductivity of the Ternary Boride Li_2Pd_3B Probed by ^{11}B NMR

    Get PDF
    We report a ^{11}B NMR measurement on the recently discovered superconductor Li_2Pd_3B. The nuclear spin lattice relaxation rate 1/T_1 shows a well-defined coherence peak just below T_c (H=1.46 T)=5.7 K, and the spin susceptibility measured by the Knight shift also decreases below T_c. These results indicate that the superconductivity is of conventional nature, with an isotropic gap. Our results also suggest that the pp-electrons of boron and the d-electrons of palladium that hybridize with boron pp-electrons are primarily responsible for the superconductivity.Comment: 4 pages, 5 figure

    Disorder, inhomogeneity and spin dynamics in f-electron non-Fermi liquid systems

    Full text link
    Muon spin rotation and relaxation (μ\muSR) experiments have yielded evidence that structural disorder is an important factor in many f-electron-based non-Fermi-liquid (NFL) systems. Disorder-driven mechanisms for NFL behaviour are suggested by the observed broad and strongly temperature-dependent μ\muSR (and NMR) linewidths in several NFL compounds and alloys. Local disorder-driven theories (Kondo disorder, Griffiths-McCoy singularity) are, however, not capable of describing the time-field scaling seen in muon spin relaxation experiments, which suggest cooperative and critical spin fluctuations rather than a distribution of local fluctuation rates. A strong empirical correlation is established between electronic disorder and slow spin fluctuations in NFL materialsComment: 24 pages, 15 figures, submitted to J. Phys.: Condens. Matte

    Screening of point charge impurities in highly anisotropic metals: application to μ+\mu^+ spin relaxation in underdoped cuprates

    Full text link
    We calculate the screening charge density distribution due to a point charge, such as that of a positive muon (μ+\mu^+), placed between the planes of a highly anisotropic layered metal. In underdoped hole cuprates the screening charge converts the charge density in the metallic-plane unit cells in the vicinity of the μ+\mu^+ to nearly its value in the insulating state. The current-loop ordered state observed by polarized neutron diffraction then vanishes in such cells, and also in nearby cells over a distance of order the intrinsic correlation length of the loop-ordered state. This in turn strongly suppresses the loop-current field at the μ+\mu^+ site. We estimate this suppressed field in underdoped YBa2_2Cu3_3O6+x_{6+x} and La2−x_{2-x}Srx_xCuO4_4, and find consistency with the observed 0.2--0.3 G field in the former case and the observed upper bound of ∼\sim0.2 G in the latter case. This resolves the controversy between the neutron diffraction and μ\muSR experiments. The screening calculation also has relevance for the effect of other charge impurities in the cuprates, such as the dopants themselves

    Susceptibility Inhomogeneity and Non-Fermi-Liquid Behavior in Ce(Ru_{0.5}Rh_{0.5})_2Si_2

    Full text link
    Magnetic susceptibility and muon spin rotation (\muSR) experiments have been carried out to study the effect of structural disorder on the non-Fermi-liquid (NFL) behavior of the heavy-fermion alloy Ce(Ru_{0.5}Rh_{0.5})_2Si_2. Analysis of the bulk susceptibility in the framework of disorder-driven Griffiths-phase and Kondo-disorder models for NFL behavior yields relatively narrow distributions of characteristic spin fluctuation energies, in agreement with \muSR linewidths that give the inhomogeneous spread in susceptibility. \muSR and NMR data both indicate that disorder explains the "nearly NFL" behavior observed above \sim2 K, but does not dominate the NFL physics found at low temperatures and low magnetic fields.Comment: 6 pages, 4 figures, REVTeX, submitted to Phys. Rev.

    59Co-NQR study on superconducting NaxCoO2.yH2O

    Full text link
    Layered Co oxide NaxCoO2.yH2O with a superconducting transition temperature Tc =4.5 K has been studied by 59Co NQR. The nuclear spin relaxation rate 1/59T1 is nearly proportional to temperature T in the normal state. In the superconducting state, it exhibits the coherence peak and decreases with decreasing T below ~0.8Tc. Detailed comparison of the 1/T1T values and the magnetic susceptibilities between NaxCoO2.yH2O and NaxCoO2 implies that the metallic state of the former system is closer to a ferromagnetic phase than that of the latter. These experimental results impose a restriction on the mechanism of the superconductivity.Comment: 7 pages, 5 figures. to be published in J. Phys. Soc. Jpn. 72 (2003) No.

    Knight Shift Anomalies in Heavy Electron Materials

    Full text link
    We calculate non-linear Knight Shift KK vs. susceptibility χ\chi anomalies for Ce ions possessing local moments in metals. The ions are modeled with the Anderson Hamiltonian and studied within the non-crossing approximation (NCA). The K−vs.−χK-vs.- \chi non-linearity diminishes with decreasing Kondo temperature T0T_0 and nuclear spin- local moment separation. Treating the Ce ions as an incoherent array in CeSn3_3, we find excellent agreement with the observed Sn K(T)K(T) data.Comment: 4 pages, Revtex, 3 figures available upon request from [email protected]

    Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOs4_{4}Sb12_{12}

    Full text link
    Transverse-field muon spin rotation (μ\muSR) experiments in the heavy-fermion superconductor PrOs4_{4}Sb12_{12} (Tc=1.85T_{c}=1.85 K) suggest that the superconducting penetration depth λ(T)\lambda(T) is temperature-independent at low temperatures, consistent with a gapped quasiparticle excitation spectrum. In contrast, radiofrequency (rf) inductive measurements yield a stronger temperature dependence of λ(T)\lambda(T), indicative of point nodes in the gap. This discrepancy appears to be related to the multiband structure of PrOs4_{4}Sb12_{12}. Muon Knight shift measurements in PrOs4_{4}Sb12_{12} suggest that the perturbing effect of the muon charge on the neighboring Pr3+^{3+} crystalline electric field is negligibly small, and therefore is unlikely to cause the difference between the μ\muSR and rf results.Comment: 10 pages, 7 figure
    • …
    corecore