679 research outputs found
Superconductivity of the Ternary Boride Li_2Pd_3B Probed by ^{11}B NMR
We report a ^{11}B NMR measurement on the recently discovered superconductor
Li_2Pd_3B. The nuclear spin lattice relaxation rate 1/T_1 shows a well-defined
coherence peak just below T_c (H=1.46 T)=5.7 K, and the spin susceptibility
measured by the Knight shift also decreases below T_c. These results indicate
that the superconductivity is of conventional nature, with an isotropic gap.
Our results also suggest that the -electrons of boron and the d-electrons of
palladium that hybridize with boron -electrons are primarily responsible for
the superconductivity.Comment: 4 pages, 5 figure
Disorder, inhomogeneity and spin dynamics in f-electron non-Fermi liquid systems
Muon spin rotation and relaxation (SR) experiments have yielded evidence
that structural disorder is an important factor in many f-electron-based
non-Fermi-liquid (NFL) systems. Disorder-driven mechanisms for NFL behaviour
are suggested by the observed broad and strongly temperature-dependent SR
(and NMR) linewidths in several NFL compounds and alloys. Local disorder-driven
theories (Kondo disorder, Griffiths-McCoy singularity) are, however, not
capable of describing the time-field scaling seen in muon spin relaxation
experiments, which suggest cooperative and critical spin fluctuations rather
than a distribution of local fluctuation rates. A strong empirical correlation
is established between electronic disorder and slow spin fluctuations in NFL
materialsComment: 24 pages, 15 figures, submitted to J. Phys.: Condens. Matte
Screening of point charge impurities in highly anisotropic metals: application to spin relaxation in underdoped cuprates
We calculate the screening charge density distribution due to a point charge,
such as that of a positive muon (), placed between the planes of a
highly anisotropic layered metal. In underdoped hole cuprates the screening
charge converts the charge density in the metallic-plane unit cells in the
vicinity of the to nearly its value in the insulating state. The
current-loop ordered state observed by polarized neutron diffraction then
vanishes in such cells, and also in nearby cells over a distance of order the
intrinsic correlation length of the loop-ordered state. This in turn strongly
suppresses the loop-current field at the site. We estimate this
suppressed field in underdoped YBaCuO and
LaSrCuO, and find consistency with the observed 0.2--0.3 G
field in the former case and the observed upper bound of 0.2 G in the
latter case. This resolves the controversy between the neutron diffraction and
SR experiments. The screening calculation also has relevance for the
effect of other charge impurities in the cuprates, such as the dopants
themselves
Susceptibility Inhomogeneity and Non-Fermi-Liquid Behavior in Ce(Ru_{0.5}Rh_{0.5})_2Si_2
Magnetic susceptibility and muon spin rotation (\muSR) experiments have been
carried out to study the effect of structural disorder on the non-Fermi-liquid
(NFL) behavior of the heavy-fermion alloy Ce(Ru_{0.5}Rh_{0.5})_2Si_2. Analysis
of the bulk susceptibility in the framework of disorder-driven Griffiths-phase
and Kondo-disorder models for NFL behavior yields relatively narrow
distributions of characteristic spin fluctuation energies, in agreement with
\muSR linewidths that give the inhomogeneous spread in susceptibility. \muSR
and NMR data both indicate that disorder explains the "nearly NFL" behavior
observed above \sim2 K, but does not dominate the NFL physics found at low
temperatures and low magnetic fields.Comment: 6 pages, 4 figures, REVTeX, submitted to Phys. Rev.
59Co-NQR study on superconducting NaxCoO2.yH2O
Layered Co oxide NaxCoO2.yH2O with a superconducting transition temperature
Tc =4.5 K has been studied by 59Co NQR. The nuclear spin relaxation rate 1/59T1
is nearly proportional to temperature T in the normal state. In the
superconducting state, it exhibits the coherence peak and decreases with
decreasing T below ~0.8Tc. Detailed comparison of the 1/T1T values and the
magnetic susceptibilities between NaxCoO2.yH2O and NaxCoO2 implies that the
metallic state of the former system is closer to a ferromagnetic phase than
that of the latter. These experimental results impose a restriction on the
mechanism of the superconductivity.Comment: 7 pages, 5 figures. to be published in J. Phys. Soc. Jpn. 72 (2003)
No.
Knight Shift Anomalies in Heavy Electron Materials
We calculate non-linear Knight Shift vs. susceptibility anomalies
for Ce ions possessing local moments in metals. The ions are modeled with the
Anderson Hamiltonian and studied within the non-crossing approximation (NCA).
The non-linearity diminishes with decreasing Kondo temperature
and nuclear spin- local moment separation. Treating the Ce ions as an
incoherent array in CeSn, we find excellent agreement with the observed Sn
data.Comment: 4 pages, Revtex, 3 figures available upon request from
[email protected]
Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOsSb
Transverse-field muon spin rotation (SR) experiments in the
heavy-fermion superconductor PrOsSb ( K) suggest that
the superconducting penetration depth is temperature-independent
at low temperatures, consistent with a gapped quasiparticle excitation
spectrum. In contrast, radiofrequency (rf) inductive measurements yield a
stronger temperature dependence of , indicative of point nodes in
the gap. This discrepancy appears to be related to the multiband structure of
PrOsSb. Muon Knight shift measurements in PrOsSb
suggest that the perturbing effect of the muon charge on the neighboring
Pr crystalline electric field is negligibly small, and therefore is
unlikely to cause the difference between the SR and rf results.Comment: 10 pages, 7 figure
- …