1,929 research outputs found
Ab initio study of alanine polypeptide chains twisting
We have investigated the potential energy surfaces for alanine chains
consisting of three and six amino acids. For these molecules we have calculated
potential energy surfaces as a function of the Ramachandran angles Phi and Psi,
which are widely used for the characterization of the polypeptide chains. These
particular degrees of freedom are essential for the characterization of
proteins folding process. Calculations have been carried out within ab initio
theoretical framework based on the density functional theory and accounting for
all the electrons in the system. We have determined stable conformations and
calculated the energy barriers for transitions between them. Using a
thermodynamic approach, we have estimated the times of characteristic
transitions between these conformations. The results of our calculations have
been compared with those obtained by other theoretical methods and with the
available experimental data extracted from the Protein Data Base. This
comparison demonstrates a reasonable correspondence of the most prominent
minima on the calculated potential energy surfaces to the experimentally
measured angles Phi and Psi for alanine chains appearing in native proteins. We
have also investigated the influence of the secondary structure of polypeptide
chains on the formation of the potential energy landscape. This analysis has
been performed for the sheet and the helix conformations of chains of six amino
acids.Comment: 24 pages, 10 figure
Secondary-Structure Design of Proteins by a Backbone Torsion Energy
We propose a new backbone-torsion-energy term in the force field for protein
systems. This torsion-energy term is represented by a double Fourier series in
two variables, the backbone dihedral angles phi and psi. It gives a natural
representation of the torsion energy in the Ramachandran space in the sense
that any two-dimensional energy surface periodic in both phi and psi can be
expanded by the double Fourier series. We can then easily control
secondary-structure-forming tendencies by modifying the torsion-energy surface.
For instance, we can increase/decrease the alpha-helix-forming-tendencies by
lowering/raising the torsion-energy surface in the alpha-helix region and
likewise increase/decrease the beta-sheet-forming tendencies by
lowering/raising the surface in the beta-sheet region in the Ramachandran
space. We applied our approach to AMBER parm94 and AMBER parm96 force fields
and demonstrated that our modifications of the torsion-energy terms resulted in
the expected changes of secondary-structure-forming-tendencies by performing
folding simulations of alpha-helical and beta-hairpin peptides.Comment: 13 pages, (Revtex4), 5 figure
Maximum Flux Transition Paths of Conformational Change
Given two metastable states A and B of a biomolecular system, the problem is
to calculate the likely paths of the transition from A to B. Such a calculation
is more informative and more manageable if done for a reduced set of collective
variables chosen so that paths cluster in collective variable space. The
computational task becomes that of computing the "center" of such a cluster. A
good way to define the center employs the concept of a committor, whose value
at a point in collective variable space is the probability that a trajectory at
that point will reach B before A. The committor "foliates" the transition
region into a set of isocommittors. The maximum flux transition path is defined
as a path that crosses each isocommittor at a point which (locally) has the
highest crossing rate of distinct reactive trajectories. (This path is
different from that of the MaxFlux method of Huo and Straub.) It is argued that
such a path is nearer to an ideal path than others that have been proposed with
the possible exception of the finite-temperature string method path. To make
the calculation tractable, three approximations are introduced, yielding a path
that is the solution of a nonsingular two-point boundary-value problem. For
such a problem, one can construct a simple and robust algorithm. One such
algorithm and its performance is discussed.Comment: 7 figure
Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study
The dynamics of pigment-pigment and pigment-protein interactions in
light-harvesting complexes is studied with a novel approach which combines
molecular dynamics (MD) simulations with quantum chemistry (QC) calculations.
The MD simulations of an LH-II complex, solvated and embedded in a lipid
bilayer at physiological conditions (with total system size of 87,055 atoms)
revealed a pathway of a water molecule into the B800 binding site, as well as
increased dimerization within the B850 BChl ring, as compared to the
dimerization found for the crystal structure. The fluctuations of pigment (B850
BChl) excitation energies, as a function of time, were determined via ab initio
QC calculations based on the geometries that emerged from the MD simulations.
From the results of these calculations we constructed a time-dependent
Hamiltonian of the B850 exciton system from which we determined the linear
absorption spectrum. Finally, a polaron model is introduced to describe quantum
mechanically both the excitonic and vibrational (phonon) degrees of freedom.
The exciton-phonon coupling that enters into the polaron model, and the
corresponding phonon spectral function are derived from the MD/QC simulations.
It is demonstrated that, in the framework of the polaron model, the absorption
spectrum of the B850 excitons can be calculated from the autocorrelation
function of the excitation energies of individual BChls, which is readily
available from the combined MD/QC simulations. The obtained result is in good
agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF
file of the paper is available at
http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd
Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation
In this paper, we investigate the conformational dynamics of alanine
dipeptide under an external electric field by nonequilibrium molecular dynamics
simulation. We consider the case of a constant and of an oscillatory field. In
this context we propose a procedure to implement the temperature control, which
removes the irrelevant thermal effects of the field. For the constant field
different time-scales are identified in the conformational, dipole moment, and
orientational dynamics. Moreover, we prove that the solvent structure only
marginally changes when the external field is switched on. In the case of
oscillatory field, the conformational changes are shown to be as strong as in
the previous case, and non-trivial nonequilibrium circular paths in the
conformation space are revealed by calculating the integrated net probability
fluxes.Comment: 23 pages, 12 figure
CHARMM: The biomolecular simulation program
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983. © 2009 Wiley Periodicals, Inc.J Comput Chem, 2009.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63074/1/21287_ftp.pd
Order through Disorder: Hyper-Mobile C-Terminal Residues Stabilize the Folded State of a Helical Peptide. A Molecular Dynamics Study
Conventional wisdom has it that the presence of disordered regions in the three-dimensional structures of polypeptides not only does not contribute significantly to the thermodynamic stability of their folded state, but, on the contrary, that the presence of disorder leads to a decrease of the corresponding proteins' stability. We have performed extensive 3.4 ”s long folding simulations (in explicit solvent and with full electrostatics) of an undecamer peptide of experimentally known helical structure, both with and without its disordered (four residue long) C-terminal tail. Our simulations clearly indicate that the presence of the apparently disordered (in structural terms) C-terminal tail, increases the thermodynamic stability of the peptide's folded (helical) state. These results show that at least for the case of relatively short peptides, the interplay between thermodynamic stability and the apparent structural stability can be rather subtle, with even disordered regions contributing significantly to the stability of the folded state. Our results have clear implications for the understanding of peptide energetics and the design of foldable peptides
Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes
Constant-pressure molecular-dynamics simulations of phospholipid membranes in
the fluid phase reveal strong correlations between equilibrium fluctuations of
volume and energy on the nanosecond time-scale. The existence of strong
volume-energy correlations was previously deduced indirectly by Heimburg from
experiments focusing on the phase transition between the fluid and the ordered
gel phases. The correlations, which are reported here for three different
membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation
coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two
temperatures showing that the correlation coefficient increases as the phase
transition is approached
Multiple pH Regime Molecular Dynamics Simulation for pK Calculations
Ionisation equilibria in proteins are influenced by conformational flexibility, which can in principle be accounted for by molecular dynamics simulation. One problem in this method is the bias arising from the fixed protonation state during the simulation. Its effect is mostly exhibited when the ionisation behaviour of the titratable groups is extrapolated to pH regions where the predetermined protonation state of the protein may not be statistically relevant, leading to conformational sampling that is not representative of the true state. In this work we consider a simple approach which can essentially reduce this problem. Three molecular dynamics structure sets are generated, each with a different protonation state of the protein molecule expected to be relevant at three pH regions, and pK calculations from the three sets are combined to predict pK over the entire pH range of interest. This multiple pH molecular dynamics approach was tested on the GCN4 leucine zipper, a protein for which a full data set of experimental data is available. The pK values were predicted with a mean deviation from the experimental data of 0.29 pH units, and with a precision of 0.13 pH units, evaluated on the basis of equivalent sites in the dimeric GCN4 leucine zipper
- âŠ