32 research outputs found
Targeting T cell (oxidative) metabolism to improve immunity to viral infection in the context of obesity
Disorders of systemic metabolism can influence immunity. Individuals with obesity are known to have increased inflammation, increased risk to select autoimmune diseases, impaired response to several infections, and impaired vaccine response. For example, over the last decade, it has become clear that individuals with obesity have increased risk of morbidity and mortality from influenza infection. Unsurprisingly, this finding is also observed in the current COVID-19 pandemic: individuals with obesity, particularly severe obesity, have increased risk of poor outcomes from SARS-CoV-2 infection, including increased rates of hospitalization, ICU admission, mechanical ventilation, and death. Several studies have now demonstrated a critical role for T cells in the context of obesity-associated immune dysfunction in response to viral infection, and one mechanism for this may be altered T cell metabolism. Indeed, recent studies have shown that activated T cells from obese mice have an altered metabolic profile characterized by increased glucose oxidation, both in vitro and in vivo following viral infection. For that reason, treatments that target abnormal immune cell metabolism in obesity may improve outcomes to viral infection. To that end, several recent studies have shown that use of the metabolic drug, metformin, can reverse abnormal T cell metabolism and restore T cell immunity, as well as survival, in response to viral infection. These findings will be discussed in detail here
Inflammation and Metabolism of Influenza-Stimulated Peripheral Blood Mononuclear Cells From Adults With Obesity Following Bariatric Surgery
BACKGROUND: Obesity dysregulates immunity to influenza infection. Therefore, there is a critical need to investigate how obesity impairs immunity and to establish therapeutic approaches that mitigate the impact of increased adiposity. One mechanism by which obesity may alter immune responses is through changes in cellular metabolism. METHODS: We studied inflammation and cellular metabolism of peripheral blood mononuclear cells (PBMCs) isolated from individuals with obesity relative to lean controls. We also investigated if impairments to PBMC metabolism were reversible upon short-term weight loss following bariatric surgery. RESULTS: Obesity was associated with systemic inflammation and poor inflammation resolution. Unstimulated PBMCs from participants with obesity had lower oxidative metabolism and adenosine triphosphate (ATP) production compared to PBMCs from lean controls. PBMC secretome analyses showed that ex vivo stimulation with A/Cal/7/2009 H1N1 influenza led to a notable increase in IL-6 with obesity. Short-term weight loss via bariatric surgery improved biomarkers of systemic metabolism but did not improve markers of inflammation resolution, PBMC metabolism, or the PBMC secretome. CONCLUSIONS: These results show that obesity drives a signature of impaired PBMC metabolism, which may be due to persistent inflammation. PBMC metabolism was not reversed after short-term weight loss despite improvements in measures of systemic metabolism
Changes in Nutritional Status Impact Immune Cell Metabolism and Function
Immune cell function and metabolism are closely linked. Many studies have now clearly demonstrated that alterations in cellular metabolism influence immune cell function and that, conversely, immune cell function determines the cellular metabolic state. Less well understood, however, are the effects of systemic metabolism or whole organism nutritional status on immune cell function and metabolism. Several studies have demonstrated that undernutrition is associated with immunosuppression, which leads to both increased susceptibility to infection and protection against several types of autoimmune disease, whereas overnutrition is associated with low-grade, chronic inflammation that increases the risk of metabolic and cardiovascular disease, promotes autoreactivity, and disrupts protective immunity. Here, we review the effects of nutritional status on immunity and highlight the effects of nutrition on circulating cytokines and immune cell populations in both human studies and mouse models. As T cells are critical members of the immune system, which direct overall immune response, we will focus this review on the influence of systemic nutritional status on T cell metabolism and function. Several cytokines and hormones have been identified which mediate the effects of nutrition on T cell metabolism and function through the expression and action of key regulatory signaling proteins. Understanding how T cells are sensitive to both inadequate and overabundant nutrients may enhance our ability to target immune cell metabolism and alter immunity in both malnutrition and obesity
Effects of T cell leptin signaling on systemic glucose tolerance and T cell responses in obesity.
Background/objectivesLeptin is an adipokine secreted in proportion to adipocyte mass and is therefore increased in obesity. Leptin signaling has been shown to directly promote inflammatory T helper 1 (Th1) and T helper 17 (Th17) cell number and function. Since T cells have a critical role in driving inflammation and systemic glucose intolerance in obesity, we sought to determine the role of leptin signaling in this context.MethodsMale and female T cell-specific leptin receptor knockout mice and littermate controls were placed on low-fat diet or high-fat diet to induce obesity for 18 weeks. Weight gain, serum glucose levels, systemic glucose tolerance, T cell metabolism, and T cell differentiation and cytokine production were examined.ResultsIn both male and female mice, T cell-specific leptin receptor deficiency did not reverse impaired glucose tolerance in obesity, although it did prevent impaired fasting glucose levels in obese mice compared to littermate controls, in a sex dependent manner. Despite these minimal effects on systemic metabolism, T cell-specific leptin signaling was required for changes in T cell metabolism, differentiation, and cytokine production observed in mice fed high-fat diet compared to low-fat diet. Specifically, we observed increased T cell oxidative metabolism, increased CD4+ T cell IFN-γ expression, and increased proportion of T regulatory (Treg) cells in control mice fed high-fat diet compared to low-fat diet, which were not observed in the leptin receptor conditional knockout mice, suggesting that leptin receptor signaling is required for some of the inflammatory changes observed in T cells in obesity.ConclusionsT cell-specific deficiency of leptin signaling alters T cell metabolism and function in obesity but has minimal effects on obesity-associated systemic metabolism. These results suggest a redundancy in cytokine receptor signaling pathways in response to inflammatory signals in obesity
Insulin and IGF-1 have both overlapping and distinct effects on CD4+ T cell mitochondria, metabolism, and function
Abstract Insulin and insulin-like growth factor 1 (IGF-1) are metabolic hormones with known effects on CD4+ T cells through insulin receptor (IR) and IGF-1 receptor (IGF-1R) signaling. Here, we describe specific and distinct roles for these hormones and receptors. We have found that IGF-1R, but not IR, expression is increased following CD4+ T cell activation or following differentiation toward Th17 cells. Although both insulin and IGF-1 increase the metabolism of CD4+ T cells, insulin has a more potent effect. However, IGF-1 has a unique role and acts specifically on Th17 cells to increase IL-17 production and Th17 cell metabolism. Furthermore, IGF-1 decreases mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS) in Th17 cells, providing a cytoprotective effect. Interestingly, both IR and IGF-1R are required for this effect of IGF-1 on mitochondria, which suggests that the hybrid IR/IGF-1R may be required for mediating the effect of IGF-1 on mitochondrial membrane potential and mROS production