333 research outputs found
Long term trends of stand transpiration in a remnant forest during wet and dry years
Daily and annual rates of stand transpiration in a drought year and a non-drought year are compared in order to understand the adaptive responses of a remnant woodland to drought and predict the effect of land use change. Two methods were used to estimate stand transpiration. In the first, the ratio of sap velocity of a few trees measured for several hundred days to the mean sap velocity of many trees measured during brief sampling periods (generally 6-7 trees for 5 or 6 days), called the Esv method is used to scale temporally from the few intensive study periods. The second method used was the Penman-Monteith (P-M) equation (called the EPM method). Weather variables and soil moisture were used to predict canopy conductance, which in turn was used to predict daily and annual stand transpiration. Comparisons of daily transpiration estimated with the two methods showed larger values for the EPM method during a drought year and smaller values for the EPM when the rainfall was above average. Generally, though, annual estimates of stand transpiration were similar using the two methods. The Esv method produced an estimate of 318 mm (61% of rainfall) in the drought year and 443 mm (42%) in the year having above average rainfall. The EPM method estimated stand transpiration as 379 mm (73%) and 398 mm (37%), respectively, for the two years. Both estimates of annual stand transpiration demonstrated that the remnant forest showed resilience to an extreme and long-term drought. More importantly, the annual estimates showed that in dry years a larger proportion of rainfall was used as transpiration, and groundwater recharge was absent but in years with above average rainfall recharge was significantly increased. Changes in leaf area index were minimal between years and changes in stomatal conductance were the dominant mechanism for adapting to the drought. The remnant forest rapidly responded to increased water availability after the drought through a new flush of leaves and increased stomatal conductance. © 2007 Elsevier B.V. All rights reserved
Is productivity of mesic savannas light limited or water limited? Results of a simulation study
A soil-plant-atmosphere model was used to estimate gross primary productivity (GPP) and evapotranspiration (ET) of a tropical savanna in Australia. This paper describes model modifications required to simulate the substantial C4 grass understory together with C3 trees. The model was further improved to include a seasonal distribution of leaf area and foliar nitrogen through 10 canopy layers. Model outputs were compared with a 5-year eddy covariance dataset. Adding the C4 photosynthesis component improved the model efficiency and root-mean-squared error (RMSE) for total ecosystem GPP by better emulating annual peaks and troughs in GPP across wet and dry seasons. The C4 photosynthesis component had minimal impact on modelled values of ET. Outputs of GPP from the modified model agreed well with measured values, explaining between 79% and 90% of the variance and having a low RMSE (0.003-0.281gCm-2day-1). Approximately, 40% of total annual GPP was contributed by C4 grasses. Total (trees and grasses) wet season GPP was approximately 75-80% of total annual GPP. Light-use efficiency (LUE) was largest for the wet season and smallest in the dry season and C4 LUE was larger than that of the trees. A sensitivity analysis of GPP revealed that daily GPP was most sensitive to changes in leaf area index (LAI) and foliar nitrogen (Nf) and relatively insensitive to changes in maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax) and minimum leaf water potential (ψmin). The modified model was also able to represent daily and seasonal patterns in ET, (explaining 68-81% of variance) with a low RMSE (0.038-0.19mmday-1). Current values of Nf, LAI and other parameters appear to be colimiting for maximizing GPP. By manipulating LAI and soil moisture content inputs, we show that modelled GPP is limited by light interception rather than water availability at this site. © 2011 Blackwell Publishing Ltd
A prospective Swedish study on body size, body composition, diabetes, and prostate cancer risk
Obesity may be associated with increased risk of prostate cancer (PCa). According to one hypothesis, obesity could lower the risk of non-aggressive tumours, while simultaneously increasing the risk of aggressive cancer. Furthermore, central adiposity may be independently associated with PCa risk; it is also associated with diabetes, which itself may influence risk of PCa. We studied the associations between height, body composition, and fat distribution, diabetes prevalence and risk of total, aggressive, and non-aggressive PCa in 10 564 initially cancer-free men (aged 45–73 years) of the population-based Malmö Diet and Cancer cohort. Anthropometric and body composition measurements, including bioelectrical impedance for estimation of fat mass, were performed by study nurses. Diabetes prevalence was self-reported. Cancer cases and clinical characteristics were ascertained through national and regional registry data. Dietary and other background data were obtained through a modified diet history method and an extensive questionnaire. During a mean follow-up of 11.0 years, 817 incidental PCa cases were diagnosed. Of these, 281 were classified as aggressive. There were 202 cases occurring before 65 years of age. Height was positively associated with total and non-aggressive PCa risk. Waist–hip ratio (WHR), a measure of central adiposity, was positively associated with PCa before age 65, and less strongly, with total PCa. This association was independent of body mass index (BMI) and other potential confounders. General adiposity, expressed as BMI or body fat percentage, and prevalent diabetes were not associated with PCa risk. In this study, WHR and body height were stronger PCa predictors than general adiposity
Cost-effectiveness of population based BRCA testing with varying Ashkenazi Jewish ancestry
BACKGROUND: Population-based BRCA1/BRCA2 testing has been found to be cost-effective compared with family history-based testing in Ashkenazi-Jewish women were >30 years old with 4 Ashkenazi-Jewish grandparents. However, individuals may have 1, 2, or 3 Ashkenazi-Jewish grandparents, and cost-effectiveness data are lacking at these lower BRCA prevalence estimates. We present an updated cost-effectiveness analysis of population BRCA1/BRCA2 testing for women with 1, 2, and 3 Ashkenazi-Jewish grandparents. METHODS: Lifetime costs and effects of population and family history-based testing were compared with the use of a decision analysis model: 56% BRCA carriers are missed by family history criteria alone. Analyses were conducted for United Kingdom and United States populations. STUDY DESIGN: Model parameters were obtained from the Genetic Cancer Prediction through Population Screening trial and published literature. Model parameters and BRCA population prevalence for individuals with 3, 2, or 1 Ashkenazi-Jewish grandparent were adjusted for the relative frequency of BRCA mutations in the Ashkenazi-Jewish and general populations. Incremental cost-effectiveness ratios were calculated for all Ashkenazi-Jewish grandparent scenarios. Costs, along with outcomes, were discounted at 3.5%. The time horizon of the analysis is "life-time," and perspective is "payer." Probabilistic sensitivity analysis evaluated model uncertainty. RESULTS: Population testing for BRCA mutations is cost-saving in Ashkenazi-Jewish women with 2, 3, or 4 grandparents (22-33 days life-gained) in the United Kingdom and 1, 2, 3, or 4 grandparents (12-26 days life-gained) in the United States populations, respectively. It is also extremely cost-effective in women in the United Kingdom with just 1 Ashkenazi-Jewish grandparent with an incremental cost-effectiveness ratio of £863 per quality-adjusted life-years and 15 days life gained. Results show that population-testing remains cost-effective at the £20,000-30000 per quality-adjusted life-years and $100,000 per quality-adjusted life-years willingness-to-pay thresholds for all 4 Ashkenazi-Jewish grandparent scenarios, with ≥95% simulations found to be cost-effective on probabilistic sensitivity analysis. Population-testing remains cost-effective in the absence of reduction in breast cancer risk from oophorectomy and at lower risk-reducing mastectomy (13%) per risk-reducing salpingo-oophorectomy (20%) rates. CONCLUSION: Population testing for BRCA mutations with varying levels of Ashkenazi-Jewish ancestry is cost-effective in the United Kingdom and the United States. These results support population testing in Ashkenazi-Jewish women with 1-4 Ashkenazi-Jewish grandparent ancestry.Supported by “The Eve Appeal” charity, which had no role in the study design, data collection, analysis, interpretation, writing of the report, or decision to submit for publication. The research team was independent of funders. I.J. and U.M. have a financial interest in Abcodia, Ltd, which is a company formed to develop academic and commercial development of biomarkers for screening and risk prediction; I.J. is a member of the board of Abcodia Ltd and a Director of Women’s Health Specialists Ltd. R.M. declares funding for research from Cancer Research UK and Barts and the London Charity outside this submitted work and an honorarium for grant review from Israel National institute for Health Policy Research. The other authors declare no conflict of interest
Dietary patterns and risk of breast cancer
Background: Evidence is emerging that prudent/healthy dietary patterns might be associated with a reduced risk of breast cancer. Methods: Using data from the prospective Melbourne Collaborative Cohort Study, we applied principal factor analysis to 124 foods and beverages to identify dietary patterns and estimated their association with breast cancer risk overall and by tumour characteristics using Cox regression. Results: During an average of 14.1 years of follow-up of 20 967 women participants, 815 invasive breast cancers were diagnosed. Among the four dietary factors that we identified, only that characterised by high consumption of fruit and salad was associated with a reduced risk, with stronger associations observed for tumours not expressing oestrogen (ER) and progesterone receptors (PR). Compared with women in the lowest quintile of the factor score, the hazard ratio for women in the highest quintile was 0.92 (95% confidence interval (CI)=0.70-1.21; test for trend, P=0.5) for ER-positive or PR-positive tumours and 0.48 (95% CI=0.26-0.86; test for trend, P=0.002) for ER-negative and PR-negative tumours (test for homogeneity, P=0.01). Conclusion: Our study provides additional support for the hypothesis that a dietary pattern rich in fruit and salad might protect against invasive breast cancer and that the effect might be stronger for ER- and PR-negative tumours. © 2011 Cancer Research UK All rights reserved
Adiponectin in relation to childhood myeloblastic leukaemia
Adiponectin, an adipocyte-specific secretory protein known to induce apoptosis, has been reported to be inversely related to breast and endometrial cancers and recently found to inhibit proliferation of myeloid but not lymphoid cell lines. We hypothesised that adiponectin may be inversely associated with acute myeloblastic leukaemia (AML), but not with acute lymphoblastic leukaemia of B (ALL-B) or T (ALL-T) cell origin in children. Blood samples and clinical information were collected over the period 1996–2000 from 201 children (0–14 years old) with leukaemia (22 AML, 161 ALL-B and 18 ALL-T cases) through a national network of childhood Hematology-Oncology units in Greece and from 201 controls hospitalised for minor pediatric ailments. Serum adiponectin levels were measured under code, at the Beth Israel Deaconess Medical Center, Boston, MA, USA using a radioimmunoassay procedure. Each of the three leukaemia groups was compared with the control group through multiple logistic regression. Odds ratios (OR) and 95% confidence intervals (95% CI) for an increase of adiponectin equal to 1 s.d. among controls were estimated controlling for gender, age, as well as for height and weight, expressed in age–gender-specific centiles of Greek growth curves. Adiponectin was inversely associated with AML (OR=0.56; 95% CI, 0.34–0.94), whereas it was not significantly associated with either ALL-B (OR=0.88; 95% CI, 0.71–1.10) or ALL-T (OR=1.08; 95% CI, 0.67–1.72). Biological plausibility and empirical evidence point to the importance of this hormone in the pathogenesis of childhood AML
Recommended from our members
Testing for Gene-Environment Interactions Using a Prospective Family Cohort Design: Body Mass Index in Early and Later Adulthood and Risk of Breast Cancer
The ability to classify people according to their underlying genetic susceptibility to a disease is increasing with new knowledge, better family data, and more sophisticated risk prediction models, allowing for more effective prevention and screening. To do so, however, we need to know whether risk associations are the same for people with different genetic susceptibilities. To illustrate one way to estimate such gene-environment interactions, we used prospective data from 3 Australian family cancer cohort studies, 2 enriched for familial risk of breast cancer. There were 288 incident breast cancers in 9,126 participants from 3,222 families. We used Cox proportional hazards models to investigate whether associations of breast cancer with body mass index (BMI; weight (kg)/height (m) ) at age 18–21 years, BMI at baseline, and change in BMI differed according to genetic risk based on lifetime breast cancer risk from birth, as estimated by BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) software, adjusted for age at baseline data collection. Although no interactions were statistically signifi- cant, we have demonstrated the power with which gene-environment interactions can be investigated using a cohort enriched for persons with increased genetic risk and a continuous measure of genetic risk based on family history.The Australian Breast Cancer Family Registry (ABCFR) was supported in Australia by the National Health and Medical Research Council, the New South Wales Cancer Council, the Victorian Health Promotion Foundation, the Victorian Breast Cancer Research Consortium, Cancer Australia, and the National Breast Cancer Foundation. The ABCFR was also supported by the National Cancer Institute, US National Institutes of Health, under Request for Application CA-06-503 and through cooperative agreements with members of the Breast Cancer Family Registry: the University of Melbourne (Melbourne, Victoria, Australia) (grant U01 CA69638); the Fox Chase Cancer Center (Philadelphia, Pennsylvania) (grant U01 CA69631); the Huntsman Cancer Institute (Salt Lake City, Utah) (grant U01 CA69446); Columbia University (New York, New York) (grant U01 CA69398); the Cancer Prevention Institute of California (Fremont, California) (grant U01 CA69417); and Cancer Care Ontario (Toronto, Ontario, Canada) (grant U01 CA69467). The Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab) was supported by a grant from the Australian National Breast Cancer Foundation and previously by the National Health and Medical Research Council, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania, and South Australia, and the Cancer Foundation of Western Australia. The Australasian Colorectal Cancer Family Registry (ACCFR) was supported by grant UM1 CA167551 from the National Cancer Institute, US National Institutes of Health, and through cooperative agreements with the members and Principal Investigators of the ACCFR (grants U01 CA074778 and U01/U24 CA097735). A.K.W. is a National Health and Medical Research Council Early Career Fellow. M.A.J. is a National Health and Medical Research Council Senior Research Fellow. K.A.P. is an Australian National Breast Cancer Foundation Fellow
Trends in esophageal cancer and body mass index by race and gender in the state of Michigan
<p>Abstract</p> <p>Background</p> <p>Adenocarcinoma of the esophagus has been increasing in incidence in the U.S. over the past several decades, particularly among white males. The factors driving the racial disparity in adenocarcinomas rates are not well understood.</p> <p>Methods</p> <p>Here we examine trends in both esophageal cancer incidence and body mass index (BMI) in a geographically defined cohort by gender and race. Age-adjusted esophageal cancer incidence rates from 1985 to 2005 were calculated from data collected by the Michigan state cancer registry. Trends were analyzed along with trends in BMI data obtained from the Behavioral Risk Factor Survey administered by the Centers for Disease Control.</p> <p>Results</p> <p>Overall, age adjusted incidence rates in esophageal carcinoma increased from 4.49 to 4.72 cases/100,000 persons per year in Michigan from 1985 to 2005. Among white males, the rate of adenocarcinomas increased by 0.21 cases/100,000 per year to a maximum of 6.40 cases/100,000 in 1999, after which these rates remained constant. There was a slight but non-significant increase in the rate of adenocarcinomas among African American males, for whom the average incidence rate was 8 times lower than that for white males (0.58 vs 4.72 cases/100,000 person years). While average BMI is rising in Michigan (from 26.68 in 1988 to 30.33 in 2005), average BMI was slightly higher among African Americans on average, and the rates of increase in BMI were not different between African American males and white males.</p> <p>Conclusion</p> <p>The disparity between African American males and white males is not explained by ecological-level trends in BMI. Further research to identify the factors responsible for this disparity, possibly including anatomic fat distribution, are required.</p
- …