67 research outputs found
Advances of nanotechnologies for hydraulic fracturing of coal seam gas reservoirs: potential applications and some limitations in Australia
Some of the most promising potential applications of nanotechnology to hydraulic fracturing of coal seam gas (CSG) are reviewed with a focus on Australian CSG wells. Three propitious applications were identified: (1) Nanoparticle enhanced viscoelastic surfactants (VES) fracturing fluids to prevent fluid loss by up to 30%, made possible by the formation of pseudo-filter cakes and reducing the viscosity of the VES fluids. Besides, there is no requirement of clay control additives or biocides. (2) Nano-proppants to extend fracture networks and reduce proppant embedment by introducing them prior to the emplacement of larger proppants. Fly Ash nanoparticles can be particularly effective because of their high sphericity and mechanical strength. (3) Nanoparticle-coated proppants, to mitigate the migration of particle fines by restricting them close to their source by adsorption, with MgO being the most effective. The use of nanotechnology in hydraulic fracturing applications is currently hindered due to a discordant regulatory environment compounded by the cost of the nanoparticles themselves, as well as, a lack of field data to validate the technology under real downhole conditions. Although the necessary field tests are unlikely to be conducted for as long as abundant natural gas is available, exploratory studies could pave the way for future applications
A mixed-methods study on perceptions towards use of Rapid Ethical Assessment to improve informed consent processes for health research in a low-income setting
Background: Rapid Ethical Assessment (REA) is a form of rapid ethnographic assessment conducted at the beginning of research project to guide the consent process with the objective of reconciling universal ethical guidance with specific research contexts. The current study is conducted to assess the perceived relevance of introducing REA as a mainstream tool in Ethiopia.
Methods: Mixed methods research using a sequential explanatory approach was conducted from July to September 2012, including 241 cross-sectional, self-administered and 19 qualitative, in-depth interviews among health researchers and regulators including ethics committee members in Ethiopian health research institutions and universities.
Results: In their evaluation of the consent process, only 40.2% thought that the consent process and information given were adequately understood by study participants; 84.6% claimed they were not satisfied with the current consent process and 85.5% thought the best interests of study participants were not adequately considered. Commonly mentioned consent-related problems included lack of clarity (48.1%), inadequate information (34%), language barriers (28.2%), cultural differences (27.4%), undue expectations (26.6%) and power imbalances (20.7%). About 95.4% believed that consent should be contextualized to the study setting and 39.4% thought REA would be an appropriate approach to improve the perceived problems. Qualitative findings helped to further explore the gaps identified in the quantitative findings and to map-out concerns related to the current research consent process in Ethiopia. Suggestions included, conducting REA during the pre-test (pilot) phase of studies when applicable. The need for clear guidance for researchers on issues such as when and how to apply the REA tools was stressed.
Conclusion: The study findings clearly indicated that there are perceived to be correctable gaps in the consent process of medical research in Ethiopia. REA is considered relevant by researchers and stakeholders to address these gaps. Exploring further the feasibility and applicability of REA is recommended
Plasma Polymer Coatings To Direct the Differentiation of Mouse Kidney-Derived Stem Cells into Podocyte and Proximal Tubule-like Cells
Kidney disease is now recognised as a global health problem and is associated with increased morbidity and mortality, along with high economic costs. To develop new treatments for ameliorating kidney injury and preventing disease progression, there is a need for appropriate renal culture systems for screening novel drugs and investigating the cellular mechanisms underlying renal pathogenesis. There is a need for in vitro culture systems that promote the growth and differentiation of specialised renal cell types. In this work, we have used plasma polymerisation technology to generate gradients of chemical functional groups to explore whether specific concentrations of these functional groups can direct the differentiation of mouse kidney-derived stem cells into specialised renal cell types. We found that amine-rich (-NH2) allylamine-based plasma polymerised coatings could promote differentiation into podocyte-like cells, whereas methyl-rich (CH3) 1,7-octadiene-based coatings promoted differentiation into proximal tubule-like cell (PTC). Importantly, the PT-like cells generated on the substrates expressed the marker megalin and were able to endocytose albumin, indicating that the cells were functional
Surface nanotopography guides kidney-derived stem cell differentiation into podocytes
Abstract not availableMelanie MacGregor-Ramiasa, Isabel Hopp, Akash Bachhuka, Patricia Murray, Krasimir Vasile
Nanoparticles Surface Chemistry Influence on Protein Corona Composition and Inflammatory Responses
Nanoparticles are widely used for biomedical applications such as vaccine, drug delivery, diagnostics, and therapeutics. This study aims to reveal the influence of nanoparticle surface functionalization on protein corona formation from blood serum and plasma and the subsequent effects on the innate immune cellular responses. To achieve this goal, the surface chemistry of silica nanoparticles of 20 nm diameter was tailored via plasma polymerization with amine, carboxylic acid, oxazolines, and alkane functionalities. The results of this study show significant surface chemistry-induced differences in protein corona composition, which reflect in the subsequent inflammatory consequences. Nanoparticles rich with carboxylic acid surface functionalities increased the production of pro-inflammatory cytokines in response to higher level of complement proteins and decreased the number of lipoproteins found in their protein coronas. On another hand, amine rich coatings led to increased expressions of anti-inflammatory markers such as arginase. The findings demonstrate the potential to direct physiological responses to nanomaterials via tailoring their surface chemical composition
Genome-Wide Association Study Identifies Two Novel Regions at 11p15.5-p13 and 1p31 with Major Impact on Acute-Phase Serum Amyloid A
Elevated levels of acute-phase serum amyloid A (A-SAA) cause amyloidosis and are a risk factor for atherosclerosis and its clinical complications, type 2 diabetes, as well as various malignancies. To investigate the genetic basis of A-SAA levels, we conducted the first genome-wide association study on baseline A-SAA concentrations in three population-based studies (KORA, TwinsUK, Sorbs) and one prospective case cohort study (LURIC), including a total of 4,212 participants of European descent, and identified two novel genetic susceptibility regions at 11p15.5-p13 and 1p31. The region at 11p15.5-p13 (rs4150642; p = 3.20×10−111) contains serum amyloid A1 (SAA1) and the adjacent general transcription factor 2 H1 (GTF2H1), Hermansky-Pudlak Syndrome 5 (HPS5), lactate dehydrogenase A (LDHA), and lactate dehydrogenase C (LDHC). This region explains 10.84% of the total variation of A-SAA levels in our data, which makes up 18.37% of the total estimated heritability. The second region encloses the leptin receptor (LEPR) gene at 1p31 (rs12753193; p = 1.22×10−11) and has been found to be associated with CRP and fibrinogen in previous studies. Our findings demonstrate a key role of the 11p15.5-p13 region in the regulation of baseline A-SAA levels and provide confirmative evidence of the importance of the 1p31 region for inflammatory processes and the close interplay between A-SAA, leptin, and other acute-phase proteins
Patient, caregiver and other knowledge user engagement in consensus-building healthcare initiatives: a scoping review protocol
Introduction Patient engagement and integrated knowledge translation (iKT) processes improve health outcomes and care experiences through meaningful partnerships in consensus-building initiatives and research. Consensus-building is essential for engaging a diverse group of experienced knowledge users in co-developing and supporting a solution where none readily exists or is less optimal. Patients and caregivers provide invaluable insights for building consensus in decision-making around healthcare, policy and research. However, despite emerging evidence, patient engagement remains sparse within consensus-building initiatives. Specifically, our research has identified a lack of opportunity for youth living with chronic health conditions and their caregivers to participate in developing consensus on indicators/benchmarks for transition into adult care. To bridge this gap and inform our consensus-building approach with youth/caregivers, this scoping review will synthesise the extent of the literature on patient and other knowledge user engagement in consensus-building healthcare initiatives. Methods and analysis Following the scoping review methodology from Joanna Briggs Institute, published literature will be searched in MEDLINE, EMBASE, CINAHL and PsycINFO databases from inception to July 2023. Grey literature will be hand-searched. Two independent reviewers will determine the eligibility of articles in a two-stage process, with disagreements resolved by a third reviewer. Included studies must be consensus-building studies within the healthcare context that involve patient engagement strategies. Data from eligible studies will be extracted and charted on a standardised form. Abstracted data will be analysed quantitatively and descriptively, according to specific consensus methodologies, and patient engagement models and/or strategies. Ethics and dissemination Ethics approval is not required for this scoping review protocol. The review process and findings will be shared with and informed by relevant knowledge users. Dissemination of findings will also include peer-reviewed publications and conference presentations. The results will offer new insights for supporting patient engagement in consensus-building healthcare initiatives. Protocol registration https://osf.io/beqj
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
Background
A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials.
Methods
This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674.
Findings
Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation.
Interpretation
ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials
- …