586 research outputs found
Impact of pre-harvest rainfall on the distribution of fusarium mycotoxins in wheat mill fractions
Legislative limits for Fusarium mycotoxins decrease from unprocessed wheat to processed products. A previous observational study identified a seasonal difference in the distribution of deoxynivalenol (DON) but not zearalenone (ZON) within mill fractions. Rainfall is known to influence the production of these mycotoxins in wheat, but the effects of rainfall on their distribution within mill fractions is not known. Laboratory and field experiments were conducted to determine the impact of different watering regimes on the distribution of DON and ZON in wheat mill fractions. Results indicated that repeated wetting and drying could cause movement of DON towards equilibrium across the mill fractions. Whereas, high levels of rainfall could cause a large reduction of DON in the grain, predominantly from the bran fraction, resulting in a proportional increase within white flour. ZON was detectable in fewer samples but results indicated it is less mobile within the grain. It is important for processors to be aware of the variation of mycotoxin distribution within mill fractions and the drivers of this variation to ensure limits set for grain intake result in mill products within mycotoxin legislative limits
BioMiCo:A supervised Bayesian model for inference of microbial community structure
Here, we describe a novel hierarchical model for Bayesian inference of microbial communities (BioMiCo). The model takes abundance data derived from environmental DNA, and models the composition of each sample by a two-level hierarchy of mixture distributions constrained by Dirichlet priors. BioMiCo is supervised, using known features for samples and appropriate prior constraints to overcome the challenges posed by many variables, sparse data, and large numbers of rare species. The model is trained on a portion of the data, where it learns how assemblages of species are mixed to form communities and how assemblages are related to the known features of each sample. Training yields a model that can predict the features of new samples. We used BioMiCo to build models for three serially sampled datasets and tested their predictive accuracy across different time points. The first model was trained to predict both body site (hand, mouth, and gut) and individual human host. It was able to reliably distinguish these features across different time points. The second was trained on vaginal microbiomes to predict both the Nugent score and individual human host. We found that women having normal and elevated Nugent scores had distinct microbiome structures that persisted over time, with additional structure within women having elevated scores. The third was trained for the purpose of assessing seasonal transitions in a coastal bacterial community. Application of this model to a high-resolution time series permitted us to track the rate and time of community succession and accurately predict known ecosystem-level events
Exact Mesonic Vacua From Matrix Models
We investigate in detail the structure of mesonic vacua of N=1 U(Nc)
supersymmetric gauge theory with Nf flavors from the matrix model. We show that
the Witten index from the matrix model calculation agrees with a result from
field theoretical analysis. We also discuss the relationship between a
diagrammatic summation and direct matrix integration with insertion of a
variable changing delta function. Using this formalism, we obtain the quantum
moduli space and evidence of the Seiberg duality from the matrix models.Comment: 14 pages, 1 figure, typos corrected and note on the quamtum moduli
space adde
Plasma Wave Properties of the Schwarzschild Magnetosphere in a Veselago Medium
We re-formulate the 3+1 GRMHD equations for the Schwarzschild black hole in a
Veselago medium. Linear perturbation in rotating (non-magnetized and
magnetized) plasma is introduced and their Fourier analysis is considered. We
discuss wave properties with the help of wave vector, refractive index and
change in refractive index in the form of graphs. It is concluded that some
waves move away from the event horizon in this unusual medium. We conclude that
for the rotating non-magnetized plasma, our results confirm the presence of
Veselago medium while the rotating magnetized plasma does not provide any
evidence for this medium.Comment: 20 pages, 15 figures, accepted for publication in Astrophys. Space
Sc
Orbital and spin contributions to the -tensors in metal nanoparticles
We present a theoretical study of the mesoscopic fluctuations of -tensors
in a metal nanoparticle. The calculations were performed using a semi-realistic
tight-binding model, which contains both spin and orbital contributions to the
-tensors. The results depend on the product of the spin-orbit scattering
time and the mean-level spacing , but are
otherwise weakly affected by the specific shape of a {\it generic}
nanoparticle. We find that the spin contribution to the -tensors agrees with
Random Matrix Theory (RMT) predictions. On the other hand, in the strong
spin-orbit coupling limit , the
orbital contribution depends crucially on the space character of the
quasi-particle wavefunctions: it levels off at a small value for states of
character but is strongly enhanced for states of character. Our numerical
results demonstrate that when orbital coupling to the field is included, RMT
predictions overestimate the typical -factor of orbitals that have dominant
-character. This finding points to a possible source of the puzzling
discrepancy between theory and experiment.Comment: 21 pages, 6 figures; accepted for publication in Physical Review
Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space
We investigate transverse electromagnetic waves propagating in a plasma in
the de Sitter space. Using the 3+1 formalism we derive the relativistic
two-fluid equations to take account of the effects due to the horizon and
describe the set of simultaneous linear equations for the perturbations. We use
a local approximation to investigate the one-dimensional radial propagation of
Alfv\'en and high frequency electromagnetic waves and solve the dispersion
relation for these waves numerically.Comment: 19 pages, 12 figure
Increased stocking rate and associated strategic dry-off decision rules reduced the amount of nitrate-N leached under grazing
peer-reviewedThe effect of intensive agricultural systems on the environment is of increasing global concern, and recent review articles have highlighted the need for sustainable intensification of food production. In grazing dairy systems, the leaching of nitrate-N (NO3-N) to groundwater is a primary environmental concern. A herd-level factor considered by many to be a key contributor to the amount of NO3-N leached from dairy pastures is stocking rate (SR), and some countries have imposed limits to reduce the risk of NO3-N loss to groundwater. The objective of the current experiment was to determine the effect of dairy cow SR on NO3-N leached in a grazing system that did not import feed from off-farm and had the same N fertilizer input. Five SR were evaluated (2.2, 2.7, 3.1, 3.7, and 4.3 cows/ha) in a completely randomized design (i.e., 2 replicates of each SR as independent farmlets) over 2 y. Pasture utilization, milk production/hectare, and days in milk/hectare increased with SR, but days in milk/cow and milk production/cow declined. The concentration of NO3-N in drainage water and the quantity of NO3-N leached/ha per year declined linearly with increasing SR, and the operating profit/kg NO3-N leached per ha increased. Higher SR was associated with fewer days in milk/cow, resulting in a reduction in estimated urine N excretion/cow (the main source of N leaching) during the climatically sensitive period for NO3-N leaching (i.e., late summer to winter). We hypothesized that the reduction in estimated urine N excretion per cow led to an increase in urinary N spread and reduced losses from urine patches. The results presented indicate that lowering SR may not reduce nitrate leaching and highlight the need for a full farm system-level analysis of any management change to determine its effect on productivity and environmental outcomes
Review: New considerations to refine breeding objectives of dairy cows for increasing robustness and sustainability of grass-based milk production systems
peer-reviewedAlthough food from grazed animals is increasingly sought by consumers because of perceived animal welfare advantages, grazing systems provide the farmer and the animal with unique challenges. The system is dependent almost daily on the climate for feed supply, with the importation of large amounts of feed from off farm, and associated labour and mechanisation costs, sometimes reducing economic viability. Furthermore, the cow may have to walk long distances and be able to harvest feed efficiently in a highly competitive environment because of the need for high levels of pasture utilisation. She must, also, be: (1) highly fertile, with a requirement for pregnancy within ~80 days post-calving; (2) ‘easy care’, because of the need for the management of large herds with limited labour; (3) able to walk long distances; and (4) robust to changes in feed supply and quality, so that short-term nutritional insults do not unduly influence her production and reproduction cycles. These are very different and are in addition to demands placed on cows in housed systems offered pre-made mixed rations. Furthermore, additional demands in environmental sustainability and animal welfare, in conjunction with the need for greater system-level biological efficiency (i.e. ‘sustainable intensification’), will add to the ‘robustness’ requirements of cows in the future. Increasingly, there is evidence that certain genotypes of cows perform better or worse in grazing systems, indicating a genotype×environment interaction. This has led to the development of tailored breeding objectives within countries for important heritable traits to maximise the profitability and sustainability of their production system. To date, these breeding objectives have focussed on the more easily measured traits and those of highest relative economic importance. In the future, there will be greater emphasis on more difficult to measure traits that are important to the quality of life of the animal in each production system and to reduce the system’s environmental footprint
The Functional, Metabolic, and Anabolic Responses to Exercise Training in Renal Transplant and Hemodialysis Patients
BACKGROUND.: Exercise intolerance is common in hemodialysis (HD) and renal transplant (RTx) patients and is related to muscle weakness. Its pathogenesis may vary between these groups leading to a different response to exercise. The aim of the study was to compare intrinsic muscular parameters between HD and RTx patients and controls, and to assess the response to exercise training on exercise capacity and muscular structure and function in these groups. METHODS.: Quadriceps function (isokinetic dynamometry), body composition (dual-energy x-ray absorptiometry), and vastus lateralis muscle biopsies were analyzed before and after a 12-week lasting training-program in 35 RTx patients, 16 HD patients, and 21 healthy controls. RESULTS.: At baseline, myosin heavy chain (MyHC) isoform composition and enzyme activities were not different between the groups. VO2peak and muscle strength improved significantly and comparably over the training-period in RTx, HD patients and controls (ptime<0.05). The proportion of MyHC type I isoforms decreased (ptime<0.001) and type IIa MyHC isoforms increased (ptime<0.05). The 3-hydroxyacyl-CoA-dehydrogenase activity increased (ptime=0.052). Intrinsic muscular changes were not significantly different between groups. In the HD group, changes in lean body mass were significantly related to changes in muscle insulin-like growth factor (IGF)-II and IGF binding protein-3. CONCLUSIONS.: Abnormalities in metabolic enzyme activities or muscle fiber redistribution do not appear to be involved in muscle dysfunction in RTx and HD patients. Exercise training has comparable beneficial effects on functional and intrinsic muscular parameters in RTx patients, HD patients, and controls. In HD patients, the anabolic response to exercise training is related to changes in the muscle IGF system
Isothermal Plasma Wave Properties of the Schwarzschild de-Sitter Black Hole in a Veselago Medium
In this paper, we study wave properties of isothermal plasma for the
Schwarzschild de-Sitter black hole in a Veselago medium. We use ADM 3+1
formalism to formulate general relativistic magnetohydrodynamical (GRMHD)
equations for the Schwarzschild de-Sitter spacetime in Rindler coordinates.
Further, Fourier analysis of the linearly perturbed GRMHD equations for the
rotating (non-magnetized and magnetized) background is taken whose determinant
leads to a dispersion relation. We investigate wave properties by using
graphical representation of the wave vector, the refractive index, change in
refractive index, phase and group velocities. Also, the modes of wave
dispersion are explored. The results indicate the existence of the Veselago
medium.Comment: 24 pages, 12 figures, accepted for publication in Astrophys. Space
Sci. arXiv admin note: text overlap with arXiv:1101.0884 and arxiv:1007.285
- …