25,146 research outputs found
Orbital order in bilayer graphene at filling factor
In a graphene bilayer with Bernal stacking both and orbital
Landau levels have zero kinetic energy. An electronic state in the N=0 Landau
level consequently has three quantum numbers in addition to its guiding center
label: its spin, its valley index or , and an orbital quantum
number The two-dimensional electron gas (2DEG) in the bilayer supports
a wide variety of broken-symmetry states in which the pseudospins associated
these three quantum numbers order in a manner that is dependent on both filling
factor and the electric potential difference between the layers. In this
paper, we study the case of in an external field strong enough to
freeze electronic spins. We show that an electric potential difference between
layers drives a series of transitions, starting from interlayer-coherent states
(ICS) at small potentials and leading to orbitally coherent states (OCS) that
are polarized in a single layer. Orbital pseudospins carry electric dipoles
with orientations that are ordered in the OCS and have Dzyaloshinskii-Moriya
interactions that can lead to spiral instabilities. We show that the microwave
absorption spectra of ICSs, OCSs, and the mixed states that occur at
intermediate potentials are sharply distinct.Comment: 21 pages, 14 figure
Excitation of g modes in Wolf-Rayet stars by a deep opacity bump
We examine the stability of l=1 and l=2 g modes in a pair of nitrogen-rich
Wolf-Rayet stellar models characterized by differing hydrogen abundances. We
find that modes with intermediate radial orders are destabilized by a kappa
mechanism operating on an opacity bump at an envelope temperature log T ~ 6.25.
This `deep opacity bump' is due primarily to L-shell bound-free transitions of
iron. Periods of the unstable modes span ~ 11-21 hr in the model containing
some hydrogen, and ~ 3-12 hr in the hydrogen-depleted model. Based on the
latter finding, we suggest that self-excited g modes may be the source of the
9.8 hr-periodic variation of WR 123 recently reported by Lefevre et al. (2005).Comment: 5 pages, 3 figures, accepted by MNRAS letter
Application of parallel distributed processing to space based systems
The concept of using Parallel Distributed Processing (PDP) to enhance automated experiment monitoring and control is explored. Recent very large scale integration (VLSI) advances have made such applications an achievable goal. The PDP machine has demonstrated the ability to automatically organize stored information, handle unfamiliar and contradictory input data and perform the actions necessary. The PDP machine has demonstrated that it can perform inference and knowledge operations with greater speed and flexibility and at lower cost than traditional architectures. In applications where the rule set governing an expert system's decisions is difficult to formulate, PDP can be used to extract rules by associating the information an expert receives with the actions taken
Skyrme Crystal In A Two-Dimensional Electron Gas
The ground state of a two-dimensional electron gas at Landau level filling
factors near is a Skyrme crystal with long range order in the
positions and orientations of the topologically and electrically charged
elementary excitations of the ferromagnetic ground state. The lowest
energy Skyrme crystal is a square lattice with opposing postures for
topological excitations on opposite sublattices. The filling factor dependence
of the electron spin-polarization, calculated for the square lattice Skyrme
crystal, is in excellent agreement with recent experiments.Comment: 3 pages, latex, 3 figures available upon request from
[email protected]
- …