578 research outputs found
Numerical solution of compressible viscous flows at high Reynolds numbers
A new numerical method which was used to reduce the computation time required in fluid dynamics to solve the Navier-Stokes equations at flight Reynolds numbers is described. The method is the implicit analogue of the explicit finite different method. It uses this as its first stage, while the second stage removes the restrictive stability condition by recasting the difference equations in an implicit form. The resulting matrix equations to be solved are either upper or lower block bidiagonal equations. The new method makes it possible and practical to calculate many important three dimensional, high Reynolds number flow fields on computers
A viscous shock-layer flowfield analysis by an explicit-implicit method
An implicit analogue of a widely used explicit method to external axisymmetric laminar flows with strong entropy gradients is extended. The details of the "numerics" of the implicit part are provided in a body oriented coordinate system with a moving outer (shock) boundary during the transient part of the solutions. The limiting values of the Courant number are obtained when the shock boundary is treated explicitly. The solution algorithm outlined includes the treatment of the source term associated with the equations in weak conservation form. From the results obtained for two sample problems, it becomes clear that accuracy of predictions is, indeed, very good at higher values of the Courant number. There is a significant saving in overall computing time, depending on the Courant number used and the flow Reynolds number. These properties combined with the simplicity of programming the implicit analog may appeal to researchers for using it in the analysis of 3-D flow problems
On the validation of a code and a turbulence model appropriate to circulation control airfoils
A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed
Numerical solution of the time-dependent compressible Navier-Stokes equations in inlet regions
The results of a study to determine the effects of compressibility on the viscous flow through channels that have straight, parallel walls are presented. Two channel configurations are considered, the flow between two semi-infinite flat plates with uniform flow prescribed at the inlet plane and a cascade of semi-infinite flat plates with uniform flow introduced upstream. The flow field is modeled by using the time dependent, compressible Navier-Stokes equations. Time dependent solutions are obtained by using an explicit finite difference technique which advances the pressure on near field subsonic boundaries such that accurate steady state solutions are obtained. Steady state results at Reynolds number 20 and 150 are presented for Mach numbers between 0.09 and 0.36 and compared with the incompressible solutions of previous studies
Navier-Stokes calculations and turbulence modeling in the trailing edge region of a circulation control airfoil
The accurate prediction of turbulent flows over curved surfaces in general and over the trailing edge region of circulation control airfoils in particular requires the coupled efforts of turbulence modelers, numerical analysts and experimentalists. The purpose of the research program in this area is described. Then, the influence on turbulence modeling of the flow characteristics over a typical circulation control wing is discussed. Next, the scope of this effort to study turbulence in the trailing edge region of a circulation control airfoil is presented. This is followed by a brief overview of the computation scheme, including the grid, governing equations, numerical method, boundary conditions and turbulence models applied to date. Then, examples of applications of two algebraic eddy viscosity models to the trailing edge region of a circulation control airfoil is presented. The results from the calculations is summarized, and conclusions drawn based on examples. Finally, the future directions of the program is outlined
A Numerical Method for Solving the Equations of Compressible Viscous Flow
Although much progress has already been made In solving problems in aerodynamic design, many new developments are still needed before the equations for unsteady compressible viscous flow can be solved routinely. This paper describes one such development. A new method for solving these equations has been devised that 1) is second-order accurate in space and time, 2) is unconditionally stable, 3) preserves conservation form, 4) requires no block or scalar tridiagonal inversions, 5) is simple and straightforward to program (estimated 10% modification for the update of many existing programs), 6) is more efficient than present methods, and 7) should easily adapt to current and future computer architectures. Computational results for laminar and turbulent flows at Reynolds numbers from 3 x 10(exp 5) to 3 x 10(exp 7) and at CFL numbers as high as 10(exp 3) are compared with theory and experiment
Corrigendum: hypoxic induced decrease in oxygen consumption in cuttlefish (Sepia officinalis) Is Associated with minor increases in Mantle Octopine but no changes in markers of protein turnover
Corrige o artigo http://hdl.handle.net/10400.1/10858 [This corrects the article DOI: 10.3389/fphys.2017.00344.].info:eu-repo/semantics/publishedVersio
Numerical Solutions of Supersonic and Hypersonic Laminar Compression Corner Flows
An efficient time-splitting, second-order accurate, numerical scheme is used to solve the complete Navier-Stokes equations for supersonic and hypersonic laminar flow over a two-dimensional compression corner. A fine, exponentially stretched mesh spacing is used in the region near the wall for resolving the viscous layer. Good agreement is obtained between the present computed results and experimental measurement for a Mach number of 14.1 and a Reynolds number of 1.04 x 10(exp 5) with wedge angles of 15 deg, 18 deg, and 24 deg. The details of the pressure variation across the boundary layer are given, and a correlation between the leading edge shock and the peaks in surface pressure and heat transfer is observed
Human and Canine Pulmonary Blastomycosis, North Carolina, 2001–2002
We investigated a cluster of blastomycosis in 8 humans and 4 dogs in a rural North Carolina community. Delayed diagnosis, difficulty isolating Blastomyces dermatitidis in nature, and lack of a sensitive and specific test to assess exposure make outbreaks of this disease difficult to study
The value of the human
Publisher's version/PDFThere is no abstract available for this article
- …