88 research outputs found

    Technical Report: Distribution Temporal Logic: Combining Correctness with Quality of Estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach.Comment: More expanded version of "Distribution Temporal Logic: Combining Correctness with Quality of Estimation" to appear in IEEE CDC 201

    Technical Report: A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints

    Full text link
    This technical report is an extended version of the paper 'A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper considers the problem of finding the most informative path for a sensing robot under temporal logic constraints, a richer set of constraints than have previously been considered in information gathering. An algorithm for informative path planning is presented that leverages tools from information theory and formal control synthesis, and is proven to give a path that satisfies the given temporal logic constraints. The algorithm uses a receding horizon approach in order to provide a reactive, on-line solution while mitigating computational complexity. Statistics compiled from multiple simulation studies indicate that this algorithm performs better than a baseline exhaustive search approach.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA

    Technical report: Distribution Temporal Logic: combining correctness with quality of estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach

    Distributed Conjugate Gradient Method via Conjugate Direction Tracking

    Full text link
    We present a distributed conjugate gradient method for distributed optimization problems, where each agent computes an optimal solution of the problem locally without any central computation or coordination, while communicating with its immediate, one-hop neighbors over a communication network. Each agent updates its local problem variable using an estimate of the average conjugate direction across the network, computed via a dynamic consensus approach. Our algorithm enables the agents to use uncoordinated step-sizes. We prove convergence of the local variable of each agent to the optimal solution of the aggregate optimization problem, without requiring decreasing step-sizes. In addition, we demonstrate the efficacy of our algorithm in distributed state estimation problems, and its robust counterparts, where we show its performance compared to existing distributed first-order optimization methods

    Robust Satisfaction of Temporal Logic Specifications via Reinforcement Learning

    Full text link
    We consider the problem of steering a system with unknown, stochastic dynamics to satisfy a rich, temporally layered task given as a signal temporal logic formula. We represent the system as a Markov decision process in which the states are built from a partition of the state space and the transition probabilities are unknown. We present provably convergent reinforcement learning algorithms to maximize the probability of satisfying a given formula and to maximize the average expected robustness, i.e., a measure of how strongly the formula is satisfied. We demonstrate via a pair of robot navigation simulation case studies that reinforcement learning with robustness maximization performs better than probability maximization in terms of both probability of satisfaction and expected robustness.Comment: 8 pages, 4 figure

    Robust satisfaction of temporal logic specifications via reinforcement learning

    Full text link
    We consider the problem of steering a system with unknown, stochastic dynamics to satisfy a rich, temporally-layered task given as a signal temporal logic formula. We represent the system as a finite-memory Markov decision process with unknown transition probabilities and whose states are built from a partition of the state space. We present provably convergent reinforcement learning algorithms to maximize the probability of satisfying a given specification and to maximize the average expected robustness, i.e. a measure of how strongly the formula is satisfied. Robustness allows us to quantify progress towards satisfying a given specification. We demonstrate via a pair of robot navigation simulation case studies that, due to the quantification of progress towards satisfaction, reinforcement learning with robustness maximization performs better than probability maximization in terms of both probability of satisfaction and expected robustness with a low number of training examples

    Q-learning for robust satisfaction of signal temporal logic specifications

    Full text link
    This paper addresses the problem of learning optimal policies for satisfying signal temporal logic (STL) specifications by agents with unknown stochastic dynamics. The system is modeled as a Markov decision process, in which the states represent partitions of a continuous space and the transition probabilities are unknown. We formulate two synthesis problems where the desired STL specification is enforced by maximizing the probability of satisfaction, and the expected robustness degree, that is, a measure quantifying the quality of satisfaction. We discuss that Q-learning is not directly applicable to these problems because, based on the quantitative semantics of STL, the probability of satisfaction and expected robustness degree are not in the standard objective form of Q-learning. To resolve this issue, we propose an approximation of STL synthesis problems that can be solved via Q-learning, and we derive some performance bounds for the policies obtained by the approximate approach. The performance of the proposed method is demonstrated via simulations
    • …
    corecore