29 research outputs found
Decay laws for three-dimensional magnetohydrodynamic turbulence
Decay laws for three-dimensional magnetohydrodynamic turbulence are obtained
from high-resolution numerical simulations using up to 512^3 modes...
Kinetic Energy Decay Rates of Supersonic and Super-Alfvenic Turbulence in Star-Forming Clouds
We present numerical studies of compressible, decaying turbulence, with and
without magnetic fields, with initial rms Alfven and Mach numbers ranging up to
five, and apply the results to the question of the support of star-forming
interstellar clouds of molecular gas. We find that, in 1D, magnetized
turbulence actually decays faster than unmagnetized turbulence. In all the
regimes that we have studied 3D turbulence-super-Alfvenic, supersonic,
sub-Alfvenic, and subsonic-the kinetic energy decays as (t-t0)^(-x), with 0.85
< x < 1.2. We compared results from two entirely different algorithms in the
unmagnetized case, and have performed extensive resolution studies in all
cases, reaching resolutions of 256^3 zones or 350,000 particles. We conclude
that the observed long lifetimes and supersonic motions in molecular clouds
must be due to external driving, as undriven turbulence decays far too fast to
explain the observations.Comment: Submitted to Phys. Rev. Letters, 29 Nov. 1997. 10 pages, 2 figures,
also available from http://www.mpia-hd.mpg.de/theory/preprints.html#maclo