5 research outputs found
A coordinate-based co-localization index to quantify and visualize spatial associations in single-molecule localization microscopy
Visualizing the subcellular distribution of proteins and determining whether specific proteins co-localize is one of the main strategies in determining the organization and potential interactions of protein complexes in biological samples. The development of super-resolution microscopy techniques such as single-molecule localization microscopy (SMLM) has tremendously increased the ability to resolve protein distribution at nanometer resolution. As super-resolution imaging techniques are becoming instrumental in revealing novel biological insights, new quantitative approaches that exploit the unique nature of SMLM datasets are required. Here, we present a new, local density-based algorithm to quantify co-localization in dual-color SMLM datasets. We show that this method is broadly applicable and only requires molecular coordinates and their localization precision as inputs. Using simulated point patterns, we show that this method robustly measures the co-localization in dual-color SMLM datasets, independent of localization density, but with high sensitivity towards local enrichments. We further validated our method using SMLM imaging of the microtubule network in epithelial cells and used it to study the spatial association between proteins at neuronal synapses. Together, we present a simple and easy-to-use, but powerful method to analyze the spatial association of molecules in dual-color SMLM datasets
Transcriptional diversity in specific synaptic gene sets discriminates cortical neuronal identity
Synapse diversity has been described from different perspectives, ranging from the specific neurotransmitters released, to their diverse biophysical properties and proteome profiles. However, synapse diversity at the transcriptional level has not been systematically identified across all synapse populations in the brain. To quantify and identify specific synaptic features of neuronal cell types we combined the SynGO (Synaptic Gene Ontology) database with single-cell RNA sequencing data of the mouse neocortex. We show that cell types can be discriminated by synaptic genes alone with the same power as all genes. The cell type discriminatory power is not equally distributed across synaptic genes as we could identify functional categories and synaptic compartments with greater cell type specific expression. Synaptic genes, and specific SynGO categories, belonged to three different types of gene modules: gradient expression over all cell types, gradient expression in selected cell types and cell class- or type-specific profiles. This data provides a deeper understanding of synapse diversity in the neocortex and identifies potential markers to selectively identify synapses from specific neuronal populations
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
A coordinate-based co-localization index to quantify and visualize spatial associations in single-molecule localization microscopy
Visualizing the subcellular distribution of proteins and determining whether specific proteins co-localize is one of the main strategies in determining the organization and potential interactions of protein complexes in biological samples. The development of super-resolution microscopy techniques such as single-molecule localization microscopy (SMLM) has tremendously increased the ability to resolve protein distribution at nanometer resolution. As super-resolution imaging techniques are becoming instrumental in revealing novel biological insights, new quantitative approaches that exploit the unique nature of SMLM datasets are required. Here, we present a new, local density-based algorithm to quantify co-localization in dual-color SMLM datasets. We show that this method is broadly applicable and only requires molecular coordinates and their localization precision as inputs. Using simulated point patterns, we show that this method robustly measures the co-localization in dual-color SMLM datasets, independent of localization density, but with high sensitivity towards local enrichments. We further validated our method using SMLM imaging of the microtubule network in epithelial cells and used it to study the spatial association between proteins at neuronal synapses. Together, we present a simple and easy-to-use, but powerful method to analyze the spatial association of molecules in dual-color SMLM datasets
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies