83 research outputs found

    Synthesis of (±)-3,4-dimethoxybenzyl- 4-methyloctanoate as a novel internal standard for capsinoid determination by HPLC-ESI-MS/MS(QTOF)

    Get PDF
    Capsinoids exhibit health-promoting properties and are therefore compounds of interest for medical and food sciences. They are minor compounds present in relatively high concentrations in only a few number of pepper cultivars. It is desirable to quantify capsinoids to provide selected cultivars with high capsinoid contents, which can then be employed as health food product. Quantifying low concentrations of capsinoids from pepper fruit requires a precise and selective analytical technique such as HPLC coupled to electrospray ionization - mass spectrometry, with development of an internal standard essential. In this work, the synthesis method of a novel compound analogue of capsinoids, the (±)-3,4-dimethoxybenzyl-4-methyloctanoate, which could be a suitable internal standard for capsinoid determination by electrospray ionization - mass spectrometry is described. (±)-3,4-dimethoxybenzyl-4-methyloctanoate was stable under the analysis conditions and exerted chemical and physical properties similar to those of capsinoids. This internal standard will provide an accurate capsinoid determination by electrospray ionization - mass spectrometry, thus facilitating the pepper breeding programs, screening pepper cultivars and a better understanding of capsinoid biosynthetic pathway

    Allelopathy of Bracken Fern (Pteridium arachnoideum): New Evidence from Green Fronds, Litter, and Soil

    Get PDF
    The neotropical bracken fern Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) is described as an aggressive pioneer plant species. It invades abandoned or newly burned areas and represents a management challenge at these invaded sites. Native to the Atlantic Forest and Cerrado (Tropical Savanna) Brazilian biomes, P. arachnoideum has nevertheless become very problematic in these conservation hotspots. Despite some reports suggesting a possible role of allelopathy in this plant’s dominance, until now there has been little evidence of isolated and individually identified compounds with phytotoxic activities present in its tissues or in the surrounding environment. Thus, the aim of this study was to investigate the allelopathic potential of P. arachnoideum by isolating and identifying any secondary metabolites with phytotoxic activity in its tissues, litter, and soil. Bioguided phytochemical investigation led to the isolation and identification of the proanthocyanidin selligueain A as the major secondary compound in the green fronds and litter of this fern. It is produced by P. arachnoideum in its green fronds, remains unaltered during the senescence process, and is the major secondary compound present in litter. Selligueain A showed phytotoxic activity against the selected target species sesame (Sesamum indicum) early development. In particular, the compound inhibited root and stem growth, and root metaxylem cell size but did not affect chlorophyll content. This compound can be considered as an allelochemical because it is present in the soil under P. arachnoideum patches as one of the major compounds in the soil solution. This is the first report of the presence of selligueain A in any member of the Dennstaedtiaceae family and the first time an isolated and identified allelochemical produced by members of the Pteridium species complex has been described. This evidence of selligueain A as a putative allelochemical of P. arachnoideum reinforces the role of allelopathy in the dominance processes of this plant in the areas where it occurs

    Taking Ecological Function Seriously: Soil Microbial Communities Can Obviate Allelopathic Effects of Released Metabolites

    Get PDF
    Allelopathy (negative, plant-plant chemical interactions) has been largely studied as an autecological process, often assuming simplistic associations between pairs of isolated species. The growth inhibition of a species in filter paper bioassay enriched with a single chemical is commonly interpreted as evidence of an allelopathic interaction, but for some of these putative examples of allelopathy, the results have not been verifiable in more natural settings with plants growing in soil.On the basis of filter paper bioassay, a recent study established allelopathic effects of m-tyrosine, a component of root exudates of Festuca rubra ssp. commutata. We re-examined the allelopathic effects of m-tyrosine to understand its dynamics in soil environment. Allelopathic potential of m-tyrosine with filter paper and soil (non-sterile or sterile) bioassays was studied using Lactuca sativa, Phalaris minor and Bambusa arundinacea as assay species. Experimental application of m-tyrosine to non-sterile and sterile soil revealed the impact of soil microbial communities in determining the soil concentration of m-tyrosine and growth responses.Here, we show that the allelopathic effects of m-tyrosine, which could be seen in sterilized soil with particular plant species were significantly diminished when non-sterile soil was used, which points to an important role for rhizosphere-specific and bulk soil microbial activity in determining the outcome of this allelopathic interaction. Our data show that the amounts of m-tyrosine required for root growth inhibition were higher than what would normally be found in F. rubra ssp. commutata rhizosphere. We hope that our study will motivate researchers to integrate the role of soil microbial communities in bioassays in allelopathic research so that its importance in plant-plant competitive interactions can be thoroughly evaluated

    Ecological phytochemistry of Cerrado (Brazilian savanna) plants

    Get PDF
    The Cerrado (the Brazilian savanna) is one of the vegetation formations of great biodiversity in Brazil and it has experienced strong deforestation and fragmentation. The Cerrado must contain at least 12,000 higher plant species.We discuss the ecological relevance of phytochemical studies carried out on plants from the Cerrado, including examples of phytotoxicity, antifungal, insecticidal and antibacterial activities. The results have been classified according to activity and plant family. The most active compounds have been highlighted and other activities are discussed. A large number of complex biochemical interactions occur in this system. However, only a small fraction of the species has been studied from the phytochemical viewpoint to identify the metabolites responsible for these interactions

    Metabolites from Withania aristata

    No full text
    • …
    corecore