1,435 research outputs found

    Real-time detection of individual atoms falling through a high-finesse optical cavity

    Get PDF
    The enhanced coupling between atoms and photons inside a high-finesse optical cavity provides a novel basis for optical measurements that continuously monitor atomic degrees of freedom. We describe an experiment in which cavity quantum-electrodynamic effects are utilized for real-time detection of individual atoms falling through an optical cavity after being dropped from a magneto-optical trap. Our technique permits experiments that are triggered by the presence of a single optimally coupled atom within the cavity mode volume

    The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying

    Full text link
    Nanophotonic technologies offer great promise for ultra-low power optical signal processing, but relatively few nonlinear-optical phenomena have yet been explored as bases for robust digital modulation/switching~\cite{Yang07,Fara08,Liu10,Noza10}. Here we show that a single two-level system (TLS) coupled strongly to an optical resonator can impart binary phase modulation on a saturating probe beam. Our experiment relies on spontaneous emission to induce occasional transitions between positive and negative phase shifts---with each such edge corresponding to a dissipated energy of just one photon (≈0.23\approx 0.23 aJ)---but an optical control beam could be used to trigger additional phase switching at signalling rates above this background. Although our ability to demonstrate controlled switching in our atom-based experiment is limited, we discuss prospects for exploiting analogous physics in a nanophotonic device incorporating a quantum dot as the TLS to realize deterministic binary phase modulation with control power in the aJ/edge regime.Comment: 7 pages, 4 figure

    Blue-light induced infrared absorption in KNbO3

    Get PDF
    We have used a high-finesse cavity to measure the cw intensity dependence and dynamics of blue-light-induced infrared absorption (BLIIRA) in KNbO3 crystals for blue-light intensities between 7 x 10^-4 and 2 x 10^4 W/cm^2. We discuss the detrimental effects of BLIIRA on the efficiency of intracavity frequency doubling and the threshold for parametric oscillation

    Design of nanophotonic circuits for autonomous subsystem quantum error correction

    Full text link
    We reapply our approach to designing nanophotonic quantum memories to formulate an optical network that autonomously protects a single logical qubit against arbitrary single-qubit errors. Emulating the 9 qubit Bacon-Shor subsystem code, the network replaces the traditionally discrete syndrome measurement and correction steps by continuous, time-independent optical interactions and coherent feedback of unitarily processed optical fields.Comment: 12 pages, 4 figure
    • …
    corecore