1,119 research outputs found
Coherent-feedback quantum control with a dynamic compensator
I present an experimental realization of a coherent-feedback control system
that was recently proposed for testing basic principles of linear quantum
stochastic control theory [M. R. James, H. I. Nurdin and I. R. Petersen, to
appear in IEEE Transactions on Automatic Control (2008),
arXiv:quant-ph/0703150v2]. For a dynamical plant consisting of an optical
ring-resonator, I demonstrate ~ 7 dB broadband disturbance rejection of
injected laser signals via all-optical feedback with a tailored dynamic
compensator. Comparison of the results with a transfer function model pinpoints
critical parameters that determine the coherent-feedback control system's
performance.Comment: 4 pages, 4 EPS figure
On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs
The purpose of this paper is to study the problem of generalizing the
Belavkin-Kalman filter to the case where the classical measurement signal is
replaced by a fully quantum non-commutative output signal. We formulate a least
mean squares estimation problem that involves a non-commutative system as the
filter processing the non-commutative output signal. We solve this estimation
problem within the framework of non-commutative probability. Also, we find the
necessary and sufficient conditions which make these non-commutative estimators
physically realizable. These conditions are restrictive in practice.Comment: 31 page
Plenary Panel Discussion: Challenges and opportunities for the future of control
This panel reflects the scope and diversity of the unprecedented challenges and opportunities for the systems and controls community that has been created by several research themes from the basic sciences to advanced technologies. Connecting physical processes at multiple time and space scales in quantum, statistical, fluid, and solid mechanics, remains not only a central scientific challenge but also one with increasing technological implications. This is particular so in highly organized and nonequilibrium systems as in biology and nanotechnology, where interconnection, feedback, and dynamics are playing an increasingly central role
Molecular Model of the Contractile Ring
We present a model for the actin contractile ring of adherent animal cells.
The model suggests that the actin concentration within the ring and
consequently the power that the ring exerts both increase during contraction.
We demonstrate the crucial role of actin polymerization and depolymerization
throughout cytokinesis, and the dominance of viscous dissipation in the
dynamics. The physical origin of two phases in cytokinesis dynamics ("biphasic
cytokinesis") follows from a limitation on the actin density. The model is
consistent with a wide range of measurements of the midzone of dividing animal
cells.Comment: PACS numbers: 87.16.Ka, 87.16.Ac
http://www.ncbi.nlm.nih.gov/pubmed/16197254
http://www.weizmann.ac.il/complex/tlusty/papers/PhysRevLett2005.pd
Spontaneous dressed-state polarization in the strong driving regime of cavity QED
We utilize high-bandwidth phase quadrature homodyne measurement of the light
transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to
detect excess phase noise induced by a single intracavity atom. We analyze the
correlation properties and driving-strength dependence of the atom-induced
phase noise to establish that it corresponds to the long-predicted phenomenon
of spontaneous dressed-state polarization. Our experiment thus provides a
demonstration of cavity quantum electrodynamics in the strong driving regime,
in which one atom interacts strongly with a many-photon cavity field to produce
novel quantum stochastic behavior.Comment: 4 pages, 4 color figure
Retroactive quantum jumps in a strongly-coupled atom-field system
We investigate a novel type of conditional dynamic that occurs in the
strongly-driven Jaynes-Cummings model with dissipation. Extending the work of
Alsing and Carmichael [Quantum Opt. {\bf 3}, 13 (1991)], we present a combined
numerical and analytic study of the Stochastic Master Equation that describes
the system's conditional evolution when the cavity output is continuously
observed via homodyne detection, but atomic spontaneous emission is not
monitored at all. We find that quantum jumps of the atomic state are induced by
its dynamical coupling to the optical field, in order retroactively to justify
atypical fluctuations in ocurring in the homodyne photocurrent.Comment: 4 pages, uses RevTex, 5 EPS figure
Effects of motion in cavity QED
We consider effects of motion in cavity quantum electrodynamics experiments
where single cold atoms can now be observed inside the cavity for many Rabi
cycles. We discuss the timescales involved in the problem and the need for good
control of the atomic motion, particularly the heating due to exchange of
excitation between the atom and the cavity, in order to realize nearly unitary
dynamics of the internal atomic states and the cavity mode which is required
for several schemes of current interest such as quantum computing. Using a
simple model we establish ultimate effects of the external atomic degrees of
freedom on the action of quantum gates. The perfomance of the gate is
characterized by a measure based on the entanglement fidelity and the motional
excitation caused by the action of the gate is calculated. We find that schemes
which rely on adiabatic passage, and are not therefore critically dependent on
laser pulse areas, are very much more robust against interaction with the
external degrees of freedom of atoms in the quantum gate.Comment: 10 pages, 5 figures, REVTeX, to be published in Walls Symposium
Special Issue of Journal of Optics
A quantum stochastic calculus approach to modeling double-pass atom-field coupling
We examine a proposal by Sherson and Moelmer to generate
polarization-squeezed light in terms of the quantum stochastic calculus (QSC).
We investigate the statistics of the output field and confirm their results
using the QSC formalism. In addition, we study the atomic dynamics of the
system and find that this setup can produce up to 3 dB of atomic spin
squeezing.Comment: Minor corrections to Section II
Scattering of polarized laser light by an atomic gas in free space: a QSDE approach
We propose a model, based on a quantum stochastic differential equation
(QSDE), to describe the scattering of polarized laser light by an atomic gas.
The gauge terms in the QSDE account for the direct scattering of the laser
light into different field channels. Once the model has been set, we can
rigorously derive quantum filtering equations for balanced polarimetry and
homodyne detection experiments, study the statistics of output processes and
investigate a strong driving, weak coupling limit.Comment: 9 pages, 2 figure
Multiphoton Coincidence Spectroscopy
We extend the analysis of photon coincidence spectroscopy beyond bichromatic
excitation and two-photon coincidence detection to include multichromatic
excitation and multiphoton coincidence detection. Trichromatic excitation and
three-photon coincidence spectroscopy are studied in detail, and we identify an
observable signature of a triple resonance in an atom-cavity system.Comment: 6 page, REVTeXs, 6 Postscript figures. The abstract appeared in the
Proceedings of ACOLS9
- …