1,332 research outputs found
Feedback control of quantum state reduction
Feedback control of quantum mechanical systems must take into account the probabilistic nature of quantum measurement. We formulate quantum feedback control as a problem of stochastic nonlinear control by considering separately a quantum filtering problem and a state feedback control problem for the filter. We explore the use of stochastic Lyapunov techniques for the design of feedback controllers for quantum spin systems and demonstrate the possibility of stabilizing one outcome of a quantum measurement with unit probability
Modelling and feedback control design for quantum state preparation
The goal of this article is to provide a largely self-contained introduction to the modelling of controlled quantum systems under continuous observation, and to the design of feedback controls that prepare particular quantum states. We describe a bottom-up approach, where a field-theoretic model is subjected to statistical inference and is ultimately controlled. As an example, the formalism is applied to a highly idealized interaction of an atomic ensemble with an optical field. Our aim is to provide a unified outline for the modelling, from first principles, of realistic experiments in quantum control
Robust quantum parameter estimation: coherent magnetometry with feedback
We describe the formalism for optimally estimating and controlling both the
state of a spin ensemble and a scalar magnetic field with information obtained
from a continuous quantum limited measurement of the spin precession due to the
field. The full quantum parameter estimation model is reduced to a simplified
equivalent representation to which classical estimation and control theory is
applied. We consider both the tracking of static and fluctuating fields in the
transient and steady state regimes. By using feedback control, the field
estimation can be made robust to uncertainty about the total spin number
A sub-Doppler resolution double resonance molecular beam infrared spectrometer operating at chemically relevant energies (~2 eV)
A molecular beam spectrometer capable of achieving sub-Doppler resolution at 2 eV (~18 000 cm^–1) of vibrational excitation is described and its performance demonstrated using the CH stretch chromophore of HCN. Two high finesse resonant power-buildup cavities are used to excite the molecules using a sequential double resonance technique. A v = 0-->2 transition is first saturated using a 1.5 µm color center laser, whereupon a fraction of the molecules is further excited to the v = 6 level using an amplitude modulated Ti:Al2O3 laser. The energy absorbed by the molecules is detected downstream of both excitation points by a cryogenically cooled bolometer using phase sensitive detection. A resolution of approximately 15 MHz (i.e., three parts in 10^8) is demonstrated by recording a rotational line in the v = 6 manifold of HCN. Scan speeds of up to several cm^–1/h were obtained, with signal-to-noise ratios in excess of 100. The high signal-to-noise ratio and a dynamic range of 6×10^4 means that future experiments to study statistical intramolecular vibrational energy redistribution in small molecules and unimolecular isomerizations can be attempted. We would also like to point out that, with improved metrology in laser wavelengths, this instrument can also be used to provide improved secondary frequency standards based upon the rovibrational spectra of molecules
Partial melting and segregation behavior in a superplastic Si3N4/Al-Mg alloy composite
科研費報告書収録論文(課題番号:07455252・基盤研究(B)(2)・H7~H9/研究代表者:小池, 淳一/αTi-Al固溶体における異常高温強化
Coherent controllers for optical-feedback cooling of quantum oscillators
We study the cooling performance of optical-feedback controllers for open
optical and mechanical resonators in the Linear Quadratic Gaussian setting of
stochastic control theory. We utilize analysis and numerical optimization of
closed-loop models based on quantum stochastic differential equations to show
that coherent control schemes, where we embed the resonator in an
interferometer to achieve all-optical feedback, can outperform optimal
measurement-based feedback control schemes in the quantum regime of low
steady-state excitation number. These performance gains are attributed to the
coherent controller's ability to simultaneously process both quadratures of an
optical probe field without measurement or loss of fidelity, and may guide the
design of coherent feedback schemes for more general problems of robust
nonlinear and robust control.Comment: 15 pages, 20 figures. Submitted to Physical Review X. Follow-up paper
to arXiv:1206.082
Deterministic Dicke state preparation with continuous measurement and control
We characterize the long-time projective behavior of the stochastic master
equation describing a continuous, collective spin measurement of an atomic
ensemble both analytically and numerically. By adding state based feedback, we
show that it is possible to prepare highly entangled Dicke states
deterministically.Comment: Additional information is available at
http://minty.caltech.edu/Ensemble
- …