36 research outputs found

    Mental Task Recognition by EEG Signals: A Novel Approach with ROC Analysis

    Get PDF
    Electroencephalogram or electroencephalography (EEG) has been widely used in medical fields and recently in cognitive science and brain-computer interface (BCI) research. To distinguish metal tasks such as reading, calculation, motor imagery, etc., it is generally to extract features of EEG signals by dimensionality reduction methods such as principle component analysis (PCA), linear determinant analysis (LDA), common spatial pattern (CSP), and so on for classifiers, for example, k-nearest neighbor method (kNN), kernel support vector machine (SVM), and artificial neural networks (ANN). In this chapter, a novel approach of feature extraction of EEG signals with receiver operating characteristic (ROC) analysis is introduced

    Training Deep Neural Networks with Reinforcement Learning for Time Series Forecasting

    Get PDF
    As a kind of efficient nonlinear function approximators, artificial neural networks (ANN) have been popularly applied to time series forecasting. The training method of ANN usually utilizes error back-propagation (BP) which is a supervised learning algorithm proposed by Rumelhart et al. in 1986; meanwhile, authors proposed to improve the robustness of the ANN for unknown time series prediction using a reinforcement learning algorithm named stochastic gradient ascent (SGA) originally proposed by Kimura and Kobayashi for control problems in 1998. We also successfully use a deep belief net (DBN) stacked by multiple restricted Boltzmann machines (RBMs) to realized time series forecasting in 2012. In this chapter, a state-of-the-art time series forecasting system that combines RBMs and multilayer perceptron (MLP) and uses SGA training algorithm is introduced. Experiment results showed the high prediction precision of the novel system not only for benchmark data but also for real phenomenon time series data

    Recognition of Brain Wave Related to the Episode Memory by Deep Learning Methods

    Get PDF
    Hippocampus makes an important role of memory in the brain. In this chapter, a study of brain wave recognition using deep learning methods is introduced. The purpose of the study is to match the ripple-firings of the hippocampal activity to the episodic memories. In fact, brain spike signals of rats (300–10 kHz) were recorded and machine learning methods such as Convolutional Neural Networks (CNN), Support Vector Machine (SVM), a deep learning model VGG16, and combination models composed by CNN with SVM and VGG16 with SVM were adopted to be classifiers of the brain wave signals. Four kinds of episodic memories, that is, a male rat contacted with a female/male rat, contacted with a novel object, and an experience of restrain stress, were detected corresponding to the ripple waves of Multiple-Unit Activities (MUAs) of hippocampal CA1 neurons in male rats in the experiments. The experiment results showed the possibility of matching of ripple-like firing patterns of hippocampus to episodic memory activities of rats, and it suggests disorders of memory function may be found by the analysis of brain waves

    Genetic Network Programming-Sarsa with Multi-Subroutines for Trading Rules on Stock Markets

    No full text

    Trading Rules on Stock Markets Using Genetic Network Programming with Reinforcement Learning and Importance Index

    No full text
    corecore