7 research outputs found

    Nedd4 mediates ErbB4 JM-a/CYT-1 ICD ubiquitination and degradation in MDCK II cells

    No full text
    ErbB4, a type I transmembrane receptor tyrosine kinase, is a member of the epidermal growth factor receptor family. Its cleavage releases an intracellular C-terminal domain (ICD), which can be either degraded following ubiqitination or translocated to the nucleus and regulate gene expression. There are 2 ErbB4 ICD isoforms: CYT-1 and CYT-2. We and others have previously reported that following cleavage, CYT-2 selectively translocates to the nucleus. In the current study we found that following cleavage, the intracellular levels of CYT-1 ICD decreased rapidly, while levels of CYT-2 ICD remained relatively stable. CYT-1 ICD degradation could be prevented by administration of either the proteasome inhibitor lactacystin or the lysosome inhibitor chloroquine, indicating both proteasomal and lysosomal degradation. Further studies implicated Nedd4, an E3 ubiquitin ligase, as a mediator of CYT-1 ubiquitination and degradation. The interaction of Nedd4 with CYT-1 was shown by coimmnunoprecipitation, an in vitro direct binding assay, and an in vitro ubiquitination assay. Three PPxY or PY motifs present in the CYT-1 C terminus are necessary for binding by Nedd4 WW domains, because impaired interactions are seen in mutation of any of the PY motifs. Nedd4-CYT-1 binding was associated with increased CYT-1 ubiquitination following proteasome inhibitor treatment. Impaired Nedd4 binding to CYT-1 by PY motif mutations led to increased CYT-1 ICD stability, whereas only one of the PY motif mutations (Y1056A), which disrupts the binding sites for both a WW domain and an SH2 domain of PI3 kinase, demonstrated enhanced nuclear translocation following HB-EGF treatment. These studies indicate that Nedd4 mediates ErbB4 CYT-1 ICD ubiquitination and degradation, and the prevention of both WW binding and PI3 kinase activity are required for ErbB4 nuclear translocation.—Zeng, F., Xu, J., Harris, R. C. Nedd4 mediates ErbB4 JM-a/CYT-1 ICD ubiquitination and degradation in MDCK II cells

    Structural and Functional Regulation of Desmosomes

    No full text

    Matrix metalloproteases and epithelial-to-mesenchymal transition: Implications for carcinoma metastasis

    No full text
    The epithelial to mesenchymal transition (EMT) is characterized by the loss of epithelial characteristics and the gain of mesenchymal attributes in epithelial cells. It has been associated with physiological and pathological processes requiring epithelial cell migration and invasion. Initially, EMT was observed in embryological and adult development with many well characterized examples including the conversions of epiblast to primary mesenchyme (gastrulation), somite to sderotome, somite to dermis, myotome to migratory myoblast, dorsal neural tube to neural crest, placodal ectoderm to cranial ganglion precursor, intermediate mesoderm to nephric mesenchyme, lateral mesoderm to connective/muscular tissue, endocardium to cardiac cushion mesenchyme and trophectoderm invasion.[1],[2] In addition, evidence is mounting to support an important role of EMT pathways in the progression of carcinoma to metastasis providing epithelial tumour cells with the ability to migrate, invade the surrounding stroma and disseminate in secondary organs.[3]–[5

    Matrix Metalloproteases and Epithelia-to-mesenchymal transition: implications for carcinoma metastasis.

    Full text link
    The epithelial to mesenchymal transition (EMT) is characterized by the loss of epithelial characteristics and the gain of mesenchymal attributes in epithelial cells. It has been associated with physiological and pathological processes requiring epithelial cell migration and invasion. Initially, EMT was observed in embryological and adult development with many well characterized examples including the conversions of epiblast to primary mesenchyme (gastrulation), somite to sderotome, somite to dermis, myotome to migratory myoblast, dorsal neural tube to neural crest, placodal ectoderm to cranial ganglion precursor, intermediate mesoderm to nephric mesenchyme, lateral mesoderm to connective/muscular tissue, endocardium to cardiac cushion mesenchyme and trophectoderm invasion.[1],[2] In addition, evidence is mounting to support an important role of EMT pathways in the progression of carcinoma to metastasis providing epithelial tumour cells with the ability to migrate, invade the surrounding stroma and disseminate in secondary organs.[3]–[5
    corecore