4 research outputs found
Mitochondrial diabetes mellitus: a review
AbstractWe review the relationship between various types of mitochondrial DNA mutations and the prevalence as well as the pathobiochemical and clinical features of mitochondrial diabetes mellitus. An A to G transversion mutation in the tRNALeu(UUR) gene is associated with diabetes is about 1.5% of the diabetic population in different countries and races. Phenotypically this type of mitochondrial diabetes is combined with deafness in more than 60% and is clinically distinguishable with respect to several characteristics from the two idiopathic forms of diabetes. The underlying pathomechanism is probably a delayed insulin secretion due to an impaired mitochondrial ATP production in consequence of the mtDNA defect
Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras–MEK–ERK pathway and of Thr69 through RalGDS–Src–p38
Transcription factor ATF2 regulates gene expression in response to environmental changes. Upon exposure to cellular stresses, the mitogen-activated proteinkinase (MAPK) cascades including SAPK/JNK and p38 can enhance ATF2’s transactivating function through phosphorylation of Thr69 and Thr71. How ever, the mechanism of ATF2 activation by growth factors that are poor activators of JNK and p38 is still elusive. Here, we show that in fibroblasts, insulin, epidermal growth factor (EGF) and serum activate ATF2 via a so far unknown two-step mechanism involving two distinct Ras effector pathways: the Raf–MEK–ERK pathway induces phosphorylation of ATF2 Thr71, whereas subsequent ATF2 Thr69 phosphorylation requires the Ral–RalGDS–Src–p38 pathway. Cooperation between ERK and p38 was found to be essential for ATF2 activation by these mitogens; the activity of p38 and JNK/SAPK in growth factor-stimulated fibroblasts is insufficient to phosphorylate ATF2 Thr71 or Thr69 + 71 significantly by themselves, while ERK cannot dual phosphorylate ATF2 Thr69 + 71 efficiently. These results reveal a so far unknown mechanism by which distinct MAPK pathways and Ras effector pathways cooperate to activate a transcription factor