74 research outputs found

    Cooling of suspended nanostructures with tunnel junctions

    Full text link
    We have investigated electronic cooling of suspended nanowires with SINIS tunnel junction coolers. The suspended samples consist of a free standing nanowire suspended by four narrow (\sim 200 nm) bridges. We have compared two different cooler designs for cooling the suspended nanowire. We demonstrate that cooling of the nanowire is possible with a proper SINIS cooler design

    Ray optics in flux avalanche propagation in superconducting films

    Get PDF
    Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu-layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell's law. For the studied film of 170 nm thickness and a 0.9 mkm thick metal layer, the refractive index was close to n=1.4. The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipation during the avalanches raising the local temperature significantly. Additional time-resolved measurements of voltage pulses generated by segments of the dendrites traversing an electrode confirm the consistency of the adapted physical picture.Comment: 4 pages, 4 figure

    Strain sensing with sub-micron sized Al-AlOx-Al tunnel junctions

    Full text link
    We demonstrate a local strain sensing method for nanostructures based on metallic Al tunnel junctions with AlOx barriers. The junctions were fabricated on top of a thin silicon nitride membrane, which was actuated with an AFM tip attached to a stiff cantilever. A large relative change in the tunneling resistance in response to the applied strain (gauge factor) was observed, up to a value 37. This facilitates local static strain variation measurements down to ~10^{-7}.Comment: 4 pages, 3 figure

    Energetics of Quantum Antidot States in Quantum Hall Regime

    Full text link
    We report experiments on the energy structure of antidot-bound states. By measuring resonant tunneling line widths as function of temperature, we determine the coupling to the remote global gate voltage and find that the effects of interelectron interaction dominate. Within a simple model, we also determine the energy spacing of the antidot bound states, self consistent edge electric field, and edge excitation drift velocity.Comment: 4 pages, RevTex, 5 Postscript figure

    Edge Dynamics in Quantum Hall Bilayers II: Exact Results with Disorder and Parallel Fields

    Full text link
    We study edge dynamics in the presence of interlayer tunneling, parallel magnetic field, and various types of disorder for two infinite sequences of quantum Hall states in symmetric bilayers. These sequences begin with the 110 and 331 Halperin states and include their fractional descendants at lower filling factors; the former is easily realized experimentally while the latter is a candidate for the experimentally observed quantum Hall state at a total filling factor of 1/2 in bilayers. We discuss the experimentally interesting observables that involve just one chiral edge of the sample and the correlation functions needed for computing them. We present several methods for obtaining exact results in the presence of interactions and disorder which rely on the chiral character of the system. Of particular interest are our results on the 331 state which suggest that a time-resolved measurement at the edge can be used to discriminate between the 331 and Pfaffian scenarios for the observed quantum Hall state at filling factor 1/2 in realistic double-layer systems.Comment: revtex+epsf; two-up postscript at http://www.sns.ias.edu/~leonid/ntwoup.p

    Proposal For A Quantum Hall Pump

    Full text link
    A device is proposed that is similar in spirit to the electron turnstile except that it operates within a quantum Hall fluid. In the integer quantum Hall regime, this device pumps an integer number of electrons per cycle. In the fractional regime, it pumps an integer number of fractionally charged quasiparticles per cycle. It is proposed that such a device can make an accurate measurement of the charge of the quantum Hall effect quasiparticles.Comment: 4 pages, LaTeX, 4 figures include

    Direct observation of micron-scale ordered structure in a two-dimensional electron system

    Full text link
    We have applied a novel scanned probe method to directly resolve the interior structure of a GaAs/AlGaAs two-dimensional electron system in a tunneling geometry. We find that the application of a perpendicular magnetic field can induce surprising density modulations that are not static as a function of the field. Near six and four filled Landau levels, stripe-like structures emerge with a characteristic wave length ~2 microns. Present theories do not account for ordered density modulations on this length scale.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Coulomb blockade of tunnelling through compressible rings formed around an antidot: an explanation for h/2eh/2e Aharonov-Bohm oscillations

    Full text link
    We consider single-electron tunnelling through antidot states using a Coulomb-blockade model, and give an explanation for h/2e Aharonov-Bohm oscillations, which are observed experimentally when the two spins of the lowest Landau level form bound states. We show that the edge channels may contain compressible regions, and using simple electrostatics, that the resonance through the outer spin states should occur twice per h/e period. An antidot may be a powerful tool for investigating quantum Hall edge states in general, and the interplay of spin and charging effects that occurs in quantum dots.Comment: 5 pages, 4 Postscript figure
    corecore