302 research outputs found
Effect of fresh water supply on agriculture in the southwest of the Netherlands.
Soil water deficits for twelve crops during each summer from 1933 to 1980 were calculated for a 15,000 ha region of southwestern Netherlands, and the chloride load of the drainage ditches, due to the seepage of salt water from the sea, was determined. Water requirements for sprinkling irrigation and for flushing the water courses for quality control were computed. The maximum water requirement for sprinkling and flushing was 3.4 mm day-1. The average increase in crop yields due to sprinkling ranged fro
Biofuel production from acid-impregnated willow and switchgrass
As part of a broader technical and economic feasibility study, we studied production of bioethanol from two types of lignocellulosic biomass by way of concentrated acid impregnation at low temperature. Willow chips and switchgrass were submitted to various impregnation techniques with concentrated sulfuric acid at varying acid: biomass ratios and impregnation times. Goal of the experiments was to investigate the technical feasibility of concentrated acid pretreatment technology as part of an industrial process that employs recycling of acid through biological means. Experimental results showed that significant amounts of fermentable sugars including glucose (up to 78 f max. obtainable glucose) and xylose can be obtained by relatively simple impregnation techniques at room temperature. Fermentation of willow-derived hydrolysates with S. Cerevisiae yielded 0.45 - 0.49 g ethanol/g glucose. Ethanol production rates however were 38 ower compared to standard glucose fermentation, prompting the need for further optimization to reduce the formation of acetic acid and furfural, two fermentation inhibitors. Novel impregnation techniques, including employment of sulfur trioxide, were also investigated but require more work to assess technical feasibilit
Gross tumour volume delineation in anal cancer on T2-weighted and diffusion-weighted MRI - Reproducibility between radiologists and radiation oncologists and impact of reader experience level and DWI image quality
Abstract Purpose To assess how gross tumour volume (GTV) delineation in anal cancer is affected by interobserver variations between radiologists and radiation oncologists, expertise level, and use of T2-weighted MRI (T2W-MRI) vs. diffusion-weighted imaging (DWI), and to explore effects of DWI quality. Methods and materials We retrospectively analyzed the MRIs (T2W-MRI and b800-DWI) of 25 anal cancer patients. Four readers (Senior and Junior Radiologist; Senior and Junior Radiation Oncologist) independently delineated GTVs, first on T2W-MRI only and then on DWI (with reference to T2W-MRI). Maximum Tumour Diameter (MTD) was calculated from each GTV. Mean GTVs/MTDs were compared between readers and between T2W-MRI vs. DWI. Interobserver agreement was calculated as Intraclass Correlation Coefficient (ICC), Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). DWI image quality was assessed using a 5-point artefact scale. Results Interobserver agreement between radiologists vs. radiation oncologists and between junior vs. senior readers was good–excellent, with similar agreement for T2W-MRI and DWI (e.g. ICCs 0.72–0.94 for T2W-MRI and 0.68–0.89 for DWI). There was a trend towards smaller GTVs on DWI, but only for the radiologists (P = 0.03–0.07). Moderate-severe DWI-artefacts were observed in 11/25 (44%) cases. Agreement tended to be lower in these cases. Conclusion Overall interobserver agreement for anal cancer GTV delineation on MRI is good for both radiologists and radiation oncologists, regardless of experience level. Use of DWI did not improve agreement. DWI artefacts affecting GTV delineation occurred in almost half of the patients, which may severely limit the use of DWI for radiotherapy planning if no steps are undertaken to avoid them
Cardiovascular RiskprofilE - IMaging and gender-specific disOrders (CREw-IMAGO): Rationale and design of a multicenter cohort study
Background: Reproductive disorders, such as polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI) and hypertensive pregnancy disorders (HPD) like pre-eclampsia (PE), are associated with an increased risk of cardiovascular disease (CVD). Detection of early signs of cardiovascular disease (CVD), as well as identification of risk factors among women of reproductive age which improve cardiovascular risk prediction, is a challenge and current models might underestimate long-term health risks. The aim of this study is to assess cardiovascular disease in patients with
A Human Minor Histocompatibility Antigen Specific for B Cell Acute Lymphoblastic Leukemia
Human minor histocompatibility antigens (mHags) play an important role in the induction of cytotoxic T lymphocyte (CTL) reactivity against leukemia after human histocompatibility leukocyte antigen (HLA)-identical allogeneic bone marrow transplantation (BMT). As most mHags are not leukemia specific but are also expressed by normal tissues, antileukemia reactivity is often associated with life-threatening graft-versus-host disease (GVHD). Here, we describe a novel mHag, HB-1, that elicits donor-derived CTL reactivity in a B cell acute lymphoblastic leukemia (B-ALL) patient treated by HLA-matched BMT. We identified the gene encoding the antigenic peptide recognized by HB-1–specific CTLs. Interestingly, expression of the HB-1 gene was only observed in B-ALL cells and Epstein-Barr virus–transformed B cells. The HB-1 gene–encoded peptide EEKRGSLHVW is recognized by the CTL in association with HLA-B44. Further analysis reveals that a polymorphism in the HB-1 gene generates a single amino acid exchange from His to Tyr at position 8 within this peptide. This amino acid substitution is critical for recognition by HB-1–specific CTLs. The restricted expression of the polymorphic HB-1 Ag by B-ALL cells and the ability to generate HB-1–specific CTLs in vitro using peptide-loaded dendritic cells offer novel opportunities to specifically target the immune system against B-ALL without the risk of evoking GVHD
Q
The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c)2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis
- …