6,058 research outputs found
Keplerian discs around post-AGB stars: a common phenomenon?
Aims: We aim at showing that the broad-band SED characteristics of our sample
of post-AGB stars are best interpreted, assuming the circumstellar dust is
stored in Keplerian rotating passive discs.
Methods: We present a homogeneous and systematic study of the Spectral Energy
Distributions (SEDs) of a sample of 51 post-AGB objects. The selection criteria
to define the whole sample were tuned to cover the broad-band characteristics
of known binary post-AGB stars. The whole sample includes 20 dusty RV Tauri
stars from the General Catalogue of Variable Stars (GCVS). We supplemented our
own Geneva optical photometry with literature data to cover a broad range of
fluxes from the UV to the far-IR.
Results: All the SEDs display very similar characteristics: a large IR excess
with a dust excess starting near the sublimation temperature, irrespective of
the effective temperature of the central star. Moreover, when available, the
long wavelength fluxes show a black-body slope indicative of the presence of a
component of large mm sized grains.
Conclusions: We argue that in all systems, gravitationally bound dusty discs
are present. The discs must be puffed-up to cover a large opening angle for the
central star and we argue that the discs have some similarity with the passive
discs detected around young stellar objects. We interpret the presence of a
disc to be a signature for binarity of the central object, but this will need
confirmation by long-term monitoring of the radial velocities. We argue that
dusty RV Tauri stars are those binaries which happen to be in the Population II
instability strip.Comment: 29 pages, 5 figures, accepted for publication in A&
Experimental investigation of the stochastic early flame propagation after ignition by a low-energy electrical discharge
In the context of explosion protection, very conservative safety factors need to be considered, e.g. in the design of electrical devices. This is due to standards which are mainly based on empirical data as opposed to a detailed knowledge of the underlying physiochemical processes. In this work, the early phase of ignition of burnable gas mixtures close to their respective minimum ignition energy is investigated experimentally by means of high-speed schlieren imaging. Our data quantifies how the ignition process at such low energies becomes less repeatable which is evidenced by a high scattering of the flame propagation. It was found that, depending on the mixture, the flow field induced by the electrical discharge may exhibit a considerable effect on the ignition process. This effect is more pronounced for mixtures which are characterized by a large Lewis number, thus, leading to a more random flame propagation
Corrections on the Thermometer Reading in an Air Stream
A method is described for checking a correction formula, based partly on theoretical considerations, for adiabatic compression and friction in flight tests and determining the value of the constant. It is necessary to apply a threefold correction to each thermometer reading. They are a correction for adiabatic compression, friction and for time lag
Waves attractors in rotating fluids: a paradigm for ill-posed Cauchy problems
In the limit of low viscosity, we show that the amplitude of the modes of
oscillation of a rotating fluid, namely inertial modes, concentrate along an
attractor formed by a periodic orbit of characteristics of the underlying
hyperbolic Poincar\'e equation. The dynamics of characteristics is used to
elaborate a scenario for the asymptotic behaviour of the eigenmodes and
eigenspectrum in the physically relevant r\'egime of very low viscosities which
are out of reach numerically. This problem offers a canonical ill-posed Cauchy
problem which has applications in other fields.Comment: 4 pages, 5 fi
Electromagnetic radiative corrections in parity-violating electron-proton scattering
QED radiative corrections have been calculated for leptonic and hadronic
variables in parity-violating elastic ep scattering. For the first time, the
calculation of the asymmetry in the elastic radiative tail is performed without
the peaking-approximation assumption in hadronic variables configuration. A
comparison with the PV-A4 data validates our approach. This method has been
also used to evaluate the radiative corrections to the parity-violating
asymmetry measured in the G0 experiment. The results obtained are here
presented.Comment: 12 pages, 11 figure
Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2
We report on a measurement of the parity-violating asymmetry in the
scattering of longitudinally polarized electrons on unpolarized protons at a
of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o.
Using a large acceptance fast PbF_2 calorimeter with a solid angle of
\Delta\Omega = 0.62 sr the A4 experiment is the first parity violation
experiment to count individual scattering events. The measured asymmetry is
A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model
expectation assuming no strangeness contributions to the vector form factors is
. The difference is a direct measurement of the
strangeness contribution to the vector form factors of the proton. The
extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2
= 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200
The Role of the Radial Orbit Instability in Dark Matter Halo Formation and Structure
For a decade, N-body simulations have revealed a nearly universal dark matter
density profile, which appears to be robust to changes in the overall density
of the universe and the underlying power spectrum. Despite its universality,
the physical origin of this profile has not yet been well understood.
Semi--analytic models by Barnes et al. (2005) have suggested that the density
structure of dark matter halos is determined by the onset of the radial orbit
instability (ROI). We have tested this hypothesis using N-body simulations of
collapsing dark matter halos with a variety of initial conditions. For
dynamically cold initial conditions, the resulting halo structures are triaxial
in shape, due to the mild aspect of the instability. We examine how variations
in initial velocity dispersion affect the onset of the instability, and find
that an isotropic velocity dispersion can suppress the ROI entirely, while a
purely radial dispersion does not. The quantity sigma^2/vc^2 is a criterion for
instability, where regions with sigma^2/vc^2 <~1 become triaxial due to the ROI
or other perturbations. We also find that the radial orbit instability sets a
scale length at which the velocity dispersion changes rapidly from isotropic to
radially anisotropic. This scale length is proportional to the radius at which
the density profile changes shape, as is the case in the semi--analytic models;
however, the coefficient of proportionality is different by a factor of ~2.5.
We conclude that the radial orbit instability is likely to be a key physical
mechanism responsible for the nearly universal profiles of simulated dark
matter halos.Comment: 13 pages, 12 figures, accepted to Ap
Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude
We report on a measurement of the asymmetry in the scattering of transversely
polarized electrons off unpolarized protons, A, at two Q values of
\qsquaredaveragedlow (GeV/c) and \qsquaredaveragedhighII (GeV/c) and a
scattering angle of . The measured transverse
asymmetries are A(Q = \qsquaredaveragedlow (GeV/c)) =
(\experimentalasymmetry alulowcorr \statisticalerrorlow
\combinedsyspolerrorlowalucor) 10 and
A(Q = \qsquaredaveragedhighII (GeV/c)) = (\experimentalasymme
tryaluhighcorr \statisticalerrorhigh
\combinedsyspolerrorhighalucor) 10. The first
errors denotes the statistical error and the second the systematic
uncertainties. A arises from the imaginary part of the two-photon
exchange amplitude and is zero in the one-photon exchange approximation. From
comparison with theoretical estimates of A we conclude that
N-intermediate states give a substantial contribution to the imaginary
part of the two-photon amplitude. The contribution from the ground state proton
to the imaginary part of the two-photon exchange can be neglected. There is no
obvious reason why this should be different for the real part of the two-photon
amplitude, which enters into the radiative corrections for the Rosenbluth
separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.
- âŠ