12 research outputs found

    The effect of shock duration on trauma-induced coagulopathy in a murine model

    Get PDF
    Background: Trauma-induced coagulopathy (TIC) is a life-threatening condition associated with high morbidity and mortality. TIC can present with different coagulation defects. In this study, the aim was to determine the effect of shock duration on TIC characteristics. We hypothesized that longer duration of shock leads to a more hypocoagulable rotational thromboelastometry (ROTEM) profile compared to a shorter duration of shock. Methods: Male B57BL/6J(c) mice (n = 5–10 per group) were sedated and mechanically ventilated. Trauma was induced by bilateral lower limb fractures and crush injuries to the liver and small intestine. Shock was induced by blood withdrawals until a mean arterial pressure of 25–30 mmHg was achieved. Groups reflected trauma and shock for 30 min (TS30) and trauma and shock for 90 min (TS90). Control groups included ventilation only (V90) and trauma only (T90). Results: Mice in the TS90 group had significantly increased base deficit compared to the V90 group. Mortality was 10% in the TS30 group and 30% in the TS90 group. ROTEM profile was more hypocoagulable, as shown by significantly lower maximum clot firmness (MCF) in the TS30 group (43.5 [37.5–46.8] mm) compared to the TS90 group (52.0 [47.0–53.0] mm, p = 0.04). ROTEM clotting time and parameters of clot build-up did not significantly differ between groups. Conclusions: TIC characteristics change with shock duration. Contrary to the hypothesis, a shorter duration of shock was associated with decreased maximum clotting amplitudes compared to a longer duration of shock. The effect of shock duration on TIC should be further assessed in trauma patients

    The effect of shock duration on trauma-induced coagulopathy in a murine model

    No full text
    Background: Trauma-induced coagulopathy (TIC) is a life-threatening condition associated with high morbidity and mortality. TIC can present with different coagulation defects. In this study, the aim was to determine the effect of shock duration on TIC characteristics. We hypothesized that longer duration of shock leads to a more hypocoagulable rotational thromboelastometry (ROTEM) profile compared to a shorter duration of shock. Methods: Male B57BL/6J(c) mice (n = 5–10 per group) were sedated and mechanically ventilated. Trauma was induced by bilateral lower limb fractures and crush injuries to the liver and small intestine. Shock was induced by blood withdrawals until a mean arterial pressure of 25–30 mmHg was achieved. Groups reflected trauma and shock for 30 min (TS30) and trauma and shock for 90 min (TS90). Control groups included ventilation only (V90) and trauma only (T90). Results: Mice in the TS90 group had significantly increased base deficit compared to the V90 group. Mortality was 10% in the TS30 group and 30% in the TS90 group. ROTEM profile was more hypocoagulable, as shown by significantly lower maximum clot firmness (MCF) in the TS30 group (43.5 [37.5–46.8] mm) compared to the TS90 group (52.0 [47.0–53.0] mm, p = 0.04). ROTEM clotting time and parameters of clot build-up did not significantly differ between groups. Conclusions: TIC characteristics change with shock duration. Contrary to the hypothesis, a shorter duration of shock was associated with decreased maximum clotting amplitudes compared to a longer duration of shock. The effect of shock duration on TIC should be further assessed in trauma patients

    Bosutinib reduces endothelial permeability and organ failure in a rat polytrauma transfusion model

    No full text
    Background: Trauma-induced shock is associated with endothelial dysfunction. We examined whether the tyrosine kinase inhibitor bosutinib as an adjunct therapy to a balanced blood component resuscitation strategy reduces trauma-induced endothelial permeability, thereby improving shock reversal and limiting transfusion requirements and organ failure in a rat polytrauma transfusion model. Methods: Male Sprague–Dawley rats (n=13 per group) were traumatised and exsanguinated until a MAP of 40 mm Hg was reached, then randomised to two groups: red blood cells, plasma and platelets in a 1:1:1 ratio with either bosutinib or vehicle. Controls were randomised to sham (median laparotomy, no trauma) with bosutinib or vehicle. Organs were harvested for histology and wet/dry (W/D) weight ratio. Results: Traumatic injury resulted in shock, with higher lactate levels compared with controls. In trauma-induced shock, the resuscitation volume needed to obtain a MAP of 60 mm Hg was lower in bosutinib-treated animals (2.8 [2.7–3.2] ml kg−1) compared with vehicle (6.1 [5.1–7.2] ml kg−1, P<0.001). Lactate levels in the bosutinib group were 2.9 [1.7–4.8] mM compared with 6.2 [3.1–14.1] mM in the vehicle group (P=0.06). Bosutinib compared with vehicle reduced lung vascular leakage (W/D ratio of 5.1 [4.6–5.3] vs 5.7 [5.4–6.0] (P=0.046) and lung injury scores (P=0.027). Conclusions: Bosutinib as an adjunct therapy to a balanced transfusion strategy reduced resuscitation volume, improved shock reversal, and reduced vascular leak and organ injury in a rat polytrauma model

    Bosutinib reduces endothelial permeability and organ failure in a rat polytrauma transfusion model

    No full text
    Background: Trauma-induced shock is associated with endothelial dysfunction. We examined whether the tyrosine kinase inhibitor bosutinib as an adjunct therapy to a balanced blood component resuscitation strategy reduces trauma-induced endothelial permeability, thereby improving shock reversal and limiting transfusion requirements and organ failure in a rat polytrauma transfusion model. Methods: Male Sprague–Dawley rats (n=13 per group) were traumatised and exsanguinated until a MAP of 40 mm Hg was reached, then randomised to two groups: red blood cells, plasma and platelets in a 1:1:1 ratio with either bosutinib or vehicle. Controls were randomised to sham (median laparotomy, no trauma) with bosutinib or vehicle. Organs were harvested for histology and wet/dry (W/D) weight ratio. Results: Traumatic injury resulted in shock, with higher lactate levels compared with controls. In trauma-induced shock, the resuscitation volume needed to obtain a MAP of 60 mm Hg was lower in bosutinib-treated animals (2.8 [2.7–3.2] ml kg −1) compared with vehicle (6.1 [5.1–7.2] ml kg −1, P<0.001). Lactate levels in the bosutinib group were 2.9 [1.7–4.8] mM compared with 6.2 [3.1–14.1] mM in the vehicle group (P=0.06). Bosutinib compared with vehicle reduced lung vascular leakage (W/D ratio of 5.1 [4.6–5.3] vs 5.7 [5.4–6.0] (P=0.046) and lung injury scores (P=0.027). Conclusions: Bosutinib as an adjunct therapy to a balanced transfusion strategy reduced resuscitation volume, improved shock reversal, and reduced vascular leak and organ injury in a rat polytrauma model

    Anti-high-mobility group box-1 treatment strategies improve trauma-induced coagulopathy in a mouse model of trauma and shock

    No full text
    Background: Trauma-induced coagulopathy is associated with platelet dysfunction and contributes to early mortality after traumatic injury. Plasma concentrations of the damage molecule high-mobility group box-1 (HMGB-1) increase after trauma, which may contribute to platelet dysfunction. We hypothesised that inhibition of HMGB-1 with a monoclonal antibody (mAb) or with recombinant thrombomodulin (rTM) improves trauma-induced coagulopathy in a murine model of trauma and shock. Methods: Male 129S2/SvPasOrlRJ mice were anaesthetised, mechanically ventilated, and randomised into five groups: (i) ventilation control (VENT), (ii) trauma/shock (TS), (iii) TS+anti-HMGB-1 mAb (TS+AB), (iv) TS+rTM (TS+TM), and (v) TS+anti-HMGB-1 mAb+rTM (TS+COMBI). Primary outcome was rotational thromboelastometry EXTEM. Secondary outcomes included tail bleeding time, platelet count, plasma HMGB-1 concentration, and platelet activation. Results: Trauma and shock resulted in a hypocoagulable thromboelastometry profile, increased plasma HMGB-1, and increased platelet activation markers. TS+AB was associated with improved clot firmness after 5 min compared with TS (34 [33–37] vs 32 [29–34] mm; P=0.043). TS+COMBI was associated with decreased clot formation time (98 [92–125] vs 122 [111–148] s; P=0.018) and increased alpha angle (77 [72–78] vs 69 [64–71] degrees; P=0.003) compared with TS. TS+COMBI also reduced tail bleeding time compared with TS (P=0.007). The TS+TM and TS+COMBI groups had higher platelet counts compared with TS (P=0.044 and P=0.041, respectively). Conclusions: Inhibition of HMGB-1 early after trauma in a mouse model improves clot formation and strength, preserves platelet count, and decreases bleeding time

    Anti-high-mobility group box-1 treatment strategies improve trauma-induced coagulopathy in a mouse model of trauma and shock

    No full text
    Background: Trauma-induced coagulopathy is associated with platelet dysfunction and contributes to early mortality after traumatic injury. Plasma concentrations of the damage molecule high-mobility group box-1 (HMGB-1) increase after trauma, which may contribute to platelet dysfunction. We hypothesised that inhibition of HMGB-1 with a monoclonal antibody (mAb) or with recombinant thrombomodulin (rTM) improves trauma-induced coagulopathy in a murine model of trauma and shock. Methods: Male 129S2/SvPasOrlRJ mice were anaesthetised, mechanically ventilated, and randomised into five groups: (i) ventilation control (VENT), (ii) trauma/shock (TS), (iii) TS+anti-HMGB-1 mAb (TS+AB), (iv) TS+rTM (TS+TM), and (v) TS+anti-HMGB-1 mAb+rTM (TS+COMBI). Primary outcome was rotational thromboelastometry EXTEM. Secondary outcomes included tail bleeding time, platelet count, plasma HMGB-1 concentration, and platelet activation. Results: Trauma and shock resulted in a hypocoagulable thromboelastometry profile, increased plasma HMGB-1, and increased platelet activation markers. TS+AB was associated with improved clot firmness after 5 min compared with TS (34 [33–37] vs 32 [29–34] mm; P=0.043). TS+COMBI was associated with decreased clot formation time (98 [92–125] vs 122 [111–148] s; P=0.018) and increased alpha angle (77 [72–78] vs 69 [64–71] degrees; P=0.003) compared with TS. TS+COMBI also reduced tail bleeding time compared with TS (P=0.007). The TS+TM and TS+COMBI groups had higher platelet counts compared with TS (P=0.044 and P=0.041, respectively). Conclusions: Inhibition of HMGB-1 early after trauma in a mouse model improves clot formation and strength, preserves platelet count, and decreases bleeding time

    Anti-high-mobility group box-1 treatment strategies improve trauma-induced coagulopathy in a mouse model of trauma and shock

    Get PDF
    Background: Trauma-induced coagulopathy is associated with platelet dysfunction and contributes to early mortality after traumatic injury. Plasma concentrations of the damage molecule high-mobility group box-1 (HMGB-1) increase after trauma, which may contribute to platelet dysfunction. We hypothesised that inhibition of HMGB-1 with a monoclonal antibody (mAb) or with recombinant thrombomodulin (rTM) improves trauma-induced coagulopathy in a murine model of trauma and shock. Methods: Male 129S2/SvPasOrlRJ mice were anaesthetised, mechanically ventilated, and randomised into five groups: (i) ventilation control (VENT), (ii) trauma/shock (TS), (iii) TS+anti-HMGB-1 mAb (TS+AB), (iv) TS+rTM (TS+TM), and (v) TS+anti-HMGB-1 mAb+rTM (TS+COMBI). Primary outcome was rotational thromboelastometry EXTEM. Secondary outcomes included tail bleeding time, platelet count, plasma HMGB-1 concentration, and platelet activation. Results: Trauma and shock resulted in a hypocoagulable thromboelastometry profile, increased plasma HMGB-1, and increased platelet activation markers. TS+AB was associated with improved clot firmness after 5 min compared with TS (34 [33–37] vs 32 [29–34] mm; P=0.043). TS+COMBI was associated with decreased clot formation time (98 [92–125] vs 122 [111–148] s; P=0.018) and increased alpha angle (77 [72–78] vs 69 [64–71] degrees; P=0.003) compared with TS. TS+COMBI also reduced tail bleeding time compared with TS (P=0.007). The TS+TM and TS+COMBI groups had higher platelet counts compared with TS (P=0.044 and P=0.041, respectively). Conclusions: Inhibition of HMGB-1 early after trauma in a mouse model improves clot formation and strength, preserves platelet count, and decreases bleeding time

    The use of cryopreserved platelets in a trauma-induced hemorrhage model

    No full text
    Background: Cryopreserved platelet products can be stored for years and are mainly used in military settings. Following thawing, cryopreserved platelets are activated, resulting in faster clot formation but reduced aggregation in vitro, rendering their efficacy in bleeding unknown. Also, concerns remain on the safety of these products. The aim was to investigate the efficacy and safety of cryopreserved platelets in a rat model of traumatic hemorrhage. Study Design and Methods: After 1 hour of shock, rats (n = 13/group) were randomized to receive a balanced transfusion pack (1:1:1 red blood cell:plasma:platelet) made from syngeneic rat blood, containing either liquid stored platelets or cryopreserved platelets. Primary outcome was the transfusion volume required to obtain a mean arterial pressure (MAP) of 60 mmHg. Secondary outcomes were coagulation as assessed by thromboelastometry (ROTEM®) and organ failure as assessed by biochemistry and histopathology. Results: The transfusion volume to obtain a MAP of 60 mmHg was lower in animals receiving cryopreserved platelets (5.4 [4.1-7.1] mL/kg) compared to those receiving liquid stored platelets (7.5 [6.4-8.5] mL/kg, p < 0.05). ROTEM® clotting times were shorter (45 [41-48] vs. 49 [45-53]sec, p < 0.05), while maximum clot firmness was slightly lower (68 [67-68] vs. 69 [69-71]mm, p < 0.01). Organ failure was similar in both groups. Conclusions: Use of cryopreserved platelets required less transfusion volume to reach a targeted MAP compared to liquid stored platelets, while organ injury was similar. These results provide a rationale for clinical trials with cryopreserved platelets in (traumatic) bleeding

    Use of a high platelet-to-RBC ratio of 2:1 is more effective in correcting trauma-induced coagulopathy than a ratio of 1:1 in a rat multiple trauma transfusion model

    No full text
    BACKGROUND: Platelet dysfunction importantly contributes to trauma-induced coagulopathy (TIC). Our aim was to examine the impact of transfusing platelets (PLTs) in a 2:1 PLT-to-red blood cell (RBC) ratio versus the standard 1:1 ratio on transfusion requirements, correction of TIC, and organ damage in a rat multiple trauma transfusion model. METHODS: Mechanically ventilated male Sprague Dawley rats were traumatized by crush injury to the small intestine and liver and a fracture of the femur, followed by exsanguination until a mean arterial pressure (MAP) of 40 mmHg. Animals were randomly assigned to receive resuscitation in a high PLT dose (PLT to plasma to RBC in a ratio of 2:1:1) or a standard PLT dose (ratio of 1:1:1) until a MAP of 60 mmHg was reached (n = 8 per group). Blood samples were taken for biochemical and thromboelastometry (ROTEM) assessment. Organs were harvested for histopathology.Outcome measures were transfusion requirements needed to reach a pretargeted MAP, as well as ROTEM correction and organ failure. RESULTS: Trauma resulted in coagulopathy as assessed by deranged ROTEM results. Mortality rate was 19%, with all deaths occurring in the standard dose group. The severity of hypovolemic shock as assessed by lactate and base excess was not different in both groups. The volume of transfusion needed to reach the MAP target was lower in the high PLT dose group compared to the standard dose, albeit not statistically significant (p = 0.054). Transfusion with a high PLT dose resulted in significant stronger clot firmness compared to the standard dose at all time points following trauma, while platelet counts were similar. Organ failure as assessed by biochemical analysis and histopathology was not different between groups, nor were there any thromboembolic events recorded. CONCLUSIONS: Resuscitation with a high (2:1) PLT-to-RBC ratio was more effective compared to standard (1:1) PLT-to-RBC ratio in treating TIC, with a trend towards reduced transfusion volumes. Also, high PLT dose did not aggravate organ damage. Transfusion strategies using higher PLT dose regiments might be a feasible treatment option in hemorrhaging trauma patients for the correction of TIC

    C-reactive protein and natural IgM antibodies are activators of complement in a rat model of intestinal ischemia and reperfusion

    No full text
    Background. The role of C-reactive protein (CRP), natural immunoglobulin M (IgM), and natural IgM against phosphorylcholine (anti-Pc IgM) was investigated in relation with complement activation in a rat model of intestinal ischemia and reperfusion (II/R). The effect of Cl-esterase inhibitor (C1-Inh) on this complement activation along with other inflammatory mediators was also studied. Methods. Rats were subjected to I h of superior mesenteric artery occlusion and 3 h of reperfusion. Intravenous administration Of vehicle (human albumin) or C1-Inh (200 U/kg) was performed before (n = 8) or after ischemia (n = 8). II/R increased levels of C4b/c, CRP, IgM, anti-Pc IgM, and myeloperoxidase. activity in the intestinal homogenates anti induced vascular leakage. Results. A good correlation was observed in the intestinal homogenates between C4b/c and CRP levels. Clear depositions of C3, CRP, and IgM in intestinal tissue were demonstrated after a II/R, and a strong correlation of both CRP and IgM with complement was observed. C1-Inh administered before ischemia reduced the complement activation response after HIR, as reflected by decreased levels of C4b/c in conjunction with reduced anti-Pr IgM in the intestinal homagenates. C1-Inh also decreased leakage of albumin when administered before ischemia. C1-Inh after ischemia reduced C4b/c levels and myeloperoxidase activity in the homogenates. Conclusions. CRP and IgM depositions correlated well with local complement activation, which suggests arole of these molecules in complement activation. Furthermore, C1-Inh inhibited potentially HIR injury either administered before or after ischemia, by attenuating complement activation induced by CRP and/or natural IgM antibodie
    corecore