9 research outputs found

    Semi-synthetic degradable notochordal cell-derived matrix hydrogel for use in degenerated intervertebral discs: Initial in vitro characterization

    Get PDF
    Low back pain is the leading cause of disability worldwide, but current therapeutic interventions are palliative or surgical in nature. Loss of notochordal cells (NCs) and degradation of the healthy matrix in the nucleus pulposus (NP), the central tissue of intervertebral discs (IVDs), has been associated with onset of degenerative disc changes. Recently, we established a protocol for decellularization of notochordal cell derived matrix (NCM) and found that it can provide regenerative cues to nucleus pulposus cells of the IVD. Here, we combined the biologically regenerative properties of decellularized NCM with the mechanical tunability of a poly(ethylene glycol) hydrogel to additionally address biomechanics in the degenerate IVD. We further introduced a hydrolysable PEG-diurethane crosslinker for slow degradation of the gels in vivo. The resulting hydrogels were tunable over a broad range of stiffness's (0.2 to 4.5 kPa), matching that of NC-rich and -poor NP tissues, respectively. Gels formed within 30 min, giving ample time for handling, and remained shear-thinning post-polymerization. Gels also slowly released dNCM over 28 days as measured by GAG effusion. Viability of encapsulated bone marrow stromal cells after extrusion through a needle remained high. Although encapsulated NCs stayed viable over two weeks, their metabolic activity decreased, and their phenotype was lost in physiological medium conditions in vitro. Overall, the obtained gels hold promise for application in degenerated IVDs but require further tuning for combined use with NCs

    Synthesis and self-assembly of bay-substituted perylene diimide gemini-type surfactants as off-on fluorescent probes for lipid bilayers

    Get PDF
    Interest in bay-substituted perylene-3,4:9,10-tetracarboxylic diimides (PDIs) for solution-based applications is growing due to their improved solubility and altered optical and electronic properties compared to unsubstituted PDIs. Synthetic routes to 1,12-bay-substituted PDIs have been very demanding due to issues with steric hindrance and poor regioselectivity. Here we report a simple one-step regioselective and high yielding synthesis of a 1,12-dihydroxylated PDI derivative that can subsequently be alkylated in a straightforward fashion to produce nonplanar 1,12-dialkoxy PDIs. These PDIs show a large Stokes shift, which is specifically useful for bioimaging applications. A particular cationic PDI gemini-type surfactant has been developed that forms nonfluorescent self-assembled particles in water ("off state"), which exerts a high fluorescence upon incorporation into lipophilic bilayers ("on state"). Therefore, this probe is appealing as a highly sensitive fluorescent labelling marker with a low background signal for imaging artificial and cellular membranes

    Synthesis and self-assembly of bay-substituted perylene diimide gemini-type surfactants as off-on fluorescent probes for lipid bilayers

    No full text
    \u3cp\u3eInterest in bay-substituted perylene-3,4:9,10-tetracarboxylic diimides (PDIs) for solution-based applications is growing due to their improved solubility and altered optical and electronic properties compared to unsubstituted PDIs. Synthetic routes to 1,12-bay-substituted PDIs have been very demanding due to issues with steric hindrance and poor regioselectivity. Here we report a simple one-step regioselective and high yielding synthesis of a 1,12-dihydroxylated PDI derivative that can subsequently be alkylated in a straightforward fashion to produce nonplanar 1,12-dialkoxy PDIs. These PDIs show a large Stokes shift, which is specifically useful for bioimaging applications. A particular cationic PDI gemini-type surfactant has been developed that forms nonfluorescent self-assembled particles in water ( off state ), which exerts a high fluorescence upon incorporation into lipophilic bilayers ( on state ). Therefore, this probe is appealing as a highly sensitive fluorescent labelling marker with a low background signal for imaging artificial and cellular membranes.\u3c/p\u3

    Semi-synthetic degradable notochordal cell-derived matrix hydrogel for use in degenerated intervertebral discs:Initial in vitro characterization

    No full text
    Low back pain is the leading cause of disability worldwide, but current therapeutic interventions are palliative or surgical in nature. Loss of notochordal cells (NCs) and degradation of the healthy matrix in the nucleus pulposus (NP), the central tissue of intervertebral discs (IVDs), has been associated with onset of degenerative disc changes. Recently, we established a protocol for decellularization of notochordal cell derived matrix (NCM) and found that it can provide regenerative cues to nucleus pulposus cells of the IVD. Here, we combined the biologically regenerative properties of decellularized NCM with the mechanical tunability of a poly(ethylene glycol) hydrogel to additionally address biomechanics in the degenerate IVD. We further introduced a hydrolysable PEG-diurethane crosslinker for slow degradation of the gels in vivo. The resulting hydrogels were tunable over a broad range of stiffness's (0.2 to 4.5 kPa), matching that of NC-rich and -poor NP tissues, respectively. Gels formed within 30 min, giving ample time for handling, and remained shear-thinning post-polymerization. Gels also slowly released dNCM over 28 days as measured by GAG effusion. Viability of encapsulated bone marrow stromal cells after extrusion through a needle remained high. Although encapsulated NCs stayed viable over two weeks, their metabolic activity decreased, and their phenotype was lost in physiological medium conditions in vitro. Overall, the obtained gels hold promise for application in degenerated IVDs but require further tuning for combined use with NCs.</p

    An all-aromatic polypyridine:Monomer and polymer synthesis; film formation and crosslinking; a candidate fuel cell membrane

    No full text
    \u3cp\u3e2,6-di (3-pyridyl)phenol and the title polymer are synthesized at 1 kg scale. Polymer is processed and crosslinked without the introduction of non-aromatic moieties after shaping into membranes. Attractive proton conduction, at high temperature (140–180 °C: 300 mS cm\u3csup\u3e−1\u3c/sup\u3e) and at room temperature (60 mS cm\u3csup\u3e−1\u3c/sup\u3e) are recorded in the dry state (higher numbers at modest humidity) and excellent retention of properties after challenge by humidity (in contrast with state-of-the-art PBI membranes). Functional fuel cells are made and tested. In prolonged use the membrane is plasticized and this seems attributable to curing reversal at the hydrogen electrode. For high temperature fuel cell use, another curing scheme (again without the introduction of aliphatic character) must be found.\u3c/p\u3

    In Vivo Retention Quantification of Supramolecular Hydrogels Engineered for Cardiac Delivery

    No full text
    Recent advances in the field of cardiac regeneration show great potential in the use of injectable hydrogels to reduce immediate flush-out of injected factors, thereby increasing the effectiveness of the encapsulated drugs. To establish a relation between cardiac function and retention of the drug-encapsulating hydrogel, a quantitative in vivo imaging method is required. Here, the supramolecular ureido-pyrimidinone modified poly(ethylene glycol) (UPy-PEG) material is developed into a bioactive hydrogel for radioactive imaging in a large animal model. A radioactive label is synthesized, being a ureido-pyrimidinone moiety functionalized with a chelator (UPy-DOTA) complexed with the radioactive isotope indium-111 (UPy-DOTA-111In) that is mixed with the hydrogel. Additionally, bioactive and adhesive properties of the UPy-PEG hydrogel are increased by supramolecular introduction of a UPy-functionalized recombinant collagen type 1-based material (UPy-PEG-RCPhC1). This method enables in vivo tracking of the nonbioactive and bioactive supramolecular hydrogels and quantification of hydrogel retention in a porcine heart. In a small pilot, cardiac retention values of 8% for UPy-PEG and 16% for UPy-PEG-RCPhC1 hydrogel are observed 4 h postinjection. This work highlights the importance of retention quantification of hydrogels in vivo, where elucidation of hydrogel quantity at the target site is proposed to strongly influence efficacy of the intended therapy

    In Vivo Retention Quantification of Supramolecular Hydrogels Engineered for Cardiac Delivery

    No full text
    Recent advances in the field of cardiac regeneration show great potential in the use of injectable hydrogels to reduce immediate flush-out of injected factors, thereby increasing the effectiveness of the encapsulated drugs. To establish a relation between cardiac function and retention of the drug-encapsulating hydrogel, a quantitative in vivo imaging method is required. Here, the supramolecular ureido-pyrimidinone modified poly(ethylene glycol) (UPy-PEG) material is developed into a bioactive hydrogel for radioactive imaging in a large animal model. A radioactive label is synthesized, being a ureido-pyrimidinone moiety functionalized with a chelator (UPy-DOTA) complexed with the radioactive isotope indium-111 (UPy-DOTA-111In) that is mixed with the hydrogel. Additionally, bioactive and adhesive properties of the UPy-PEG hydrogel are increased by supramolecular introduction of a UPy-functionalized recombinant collagen type 1-based material (UPy-PEG-RCPhC1). This method enables in vivo tracking of the nonbioactive and bioactive supramolecular hydrogels and quantification of hydrogel retention in a porcine heart. In a small pilot, cardiac retention values of 8% for UPy-PEG and 16% for UPy-PEG-RCPhC1 hydrogel are observed 4 h postinjection. This work highlights the importance of retention quantification of hydrogels in vivo, where elucidation of hydrogel quantity at the target site is proposed to strongly influence efficacy of the intended therapy

    Left ventricular function, strain, and infarct characteristics in patients with transient ST-segment elevation myocardial infarction compared to ST-segment and non-ST-segment elevation myocardial infarctions

    No full text
    Aims: This study aims to explore cardiovascular magnetic resonance (CMR)-derived left ventricular (LV) function, strain, and infarct size characteristics in patients with transient ST-segment elevation myocardial infarction (TSTEMI) compared to patients with ST-segment and non-ST-segment elevation myocardial infarctions (STEMI and NSTEMI, respectively). Methods and results: In total, 407 patients were enrolled in this multicentre observational prospective cohort study. All patients underwent CMR examination 2-8 days after the index event. CMR cine imaging was performed for functional assessment and late gadolinium enhancement to determine infarct size and identify microvascular obstruction (MVO). TSTEMI patients demonstrated the highest LV ejection fraction and the most preserved global LV strain (longitudinal, circumferential, and radial) across the three groups (overall P ≤ 0.001). The CMR-defined infarction was less frequently observed in TSTEMI than in STEMI patients [77 (65%) vs. 124 (98%), P < 0.001] but was comparable with NSTEMI patients [77 (65%) vs. 66 (70%), P = 0.44]. A remarkably smaller infarct size was seen in TSTEMI compared to STEMI patients [1.4 g (0.0-3.9) vs. 13.5 g (5.3-26.8), P < 0.001], whereas infarct size was not significantly different from that in NSTEMI patients [1.4 g (0.0-3.9) vs. 2.1 g (0.0-8.6), P = 0.06]. Whilst the presence of MVO was less frequent in TSTEMI compared to STEMI patients [5 (4%) vs. 53 (31%), P < 0.001], no significant difference was seen compared to NSTEMI patients [5 (4%) vs. 5 (5%), P = 0.72]. Conclusion: TSTEMI yielded favourable cardiac LV function, strain, and infarct-related scar mass compared to STEMI and NSTEMI. LV function and infarct characteristics of TSTEMI tend to be more similar to NSTEMI than STEMI
    corecore