15 research outputs found

    Assumptions for long-term stochastic population forecasts in 18 European countries: Hypothèses de projections stochastiquesàlong terme des populations de 18 pays européens

    Get PDF
    The aim of the ‘Uncertain Population of Europe’(UPE) project was to compute long-term stochastic (probabilistic) population forecasts for 18 European countries. We developed a general methodology for constructing predictive distributions for fertility, mortality and migration. The assumptions underlying stochastic population forecasts can be assessed by analysing errors in past forecasts or model-based estimates of forecast errors, or by expert judgement. All three approaches have been used in the project. This article summarizes and discusses the results of the three approaches. It demonstrates how the—sometimes conflicting—results can be synthesized into a consistent set of assumptions about the expected levels and the uncertainty of total fertility rate, life expectancy at birth of men and women, and net migration for 18 European countries

    European Demographic Forecasts Have Not Become More Accurate Over the Past 25 Years

    No full text
    Nowadays, demographers, population statisticians, and population forecasters have richer data, more refined theories of demographic behavior, and more sophisticated methods of analysis than they had two or three decades ago. This scientific progress should have made it easier to predict demographic behavior. But analyses of the errors in older forecasts show that demographic forecasts published by statistical agencies in 14 European countries have not become more accurate over the past 25 years. The findings demonstrate that scientific progress in population studies during the previous two to three decades has not kept up with the trend toward less predictable demographic behavior of populations in European countries. There is no reason to be more optimistic about US Census Bureau forecasts. Population forecasts are intrinsically uncertain, hence should be couched in probabilistic terms. Copyright (c) 2008 The Population Council, Inc..

    Expanding spectrum of human RYR2-related disease - New electrocardiographic, structural, and genetic features

    No full text
    Background - Catecholaminergic polymorphic ventricular tachycardia is a disease characterized by ventricular arrhythmias elicited exclusively under adrenergic stress. Additional features include baseline bradycardia and, in some patients, right ventricular fatty displacement. The clinical spectrum is expanded by the 2 families described here. Methods and Results - Sixteen members from 2 separate families have been clinically evaluated and followed over the last 15 years. In addition to exercise-related ventricular arrhythmias, they showed abnormalities in sinoatrial node function, as well as atrioventricular nodal function, atrial fibrillation, and atrial standstill. Left ventricular dysfunction and dilatation was present in several affected individuals. Linkage analysis mapped the disease phenotype to a 4-cM region on chromosome 1q42-q43. Conventional polymerase chain reaction- based screening did not reveal a mutation in either the Ryanodine receptor 2 gene (RYR2) or ACTN2, the most plausible candidate genes in the region of interest. Multiplex ligation-dependent probe amplification and long-range polymerase chain reaction identified a genomic deletion that involved RYR2 exon-3, segregated in all the affected family members (n=16) in these 2 unlinked families. Further investigation revealed that the genomic deletion occurred in both families as a result of Alu repeat-mediated polymerase slippage. Conclusions - This is the first report on a large genomic deletion in RYR2, which leads to extended clinical phenotypes (eg, sinoatrial node and atrioventricular node dysfunction, atrial fibrillation, atrial standstill, and dilated cardiomyopathy). These features have not previously been linked to RYR2

    Mutations in Histone Acetylase Modifier BRPF1 Cause an Autosomal-Dominant Form of Intellectual Disability with Associated Ptosis

    No full text
    Intellectual disability (ID) is a common neurodevelopmental disorder exhibiting extreme genetic heterogeneity, and more than 500 genes have been implicated in Mendelian forms of ID. We performed exome sequencing in a large family affected by an autosomal-dominant form of mild syndromic ID with ptosis, growth retardation, and hypotonia, and we identified an inherited 2 bp deletion causing a frameshift in BRPF1 (c.1052_1053del) in five affected family members. BRPF1 encodes a protein modifier of two histone acetyltransferases associated with ID: KAT6A (also known as MOZ or MYST3) and KAT6B (MORF or MYST4). The mRNA transcript was not significantly reduced in affected fibroblasts and most likely produces a truncated protein (p.Val351Glyfs(∗)8). The protein variant shows an aberrant cellular location, loss of certain protein interactions, and decreased histone H3K23 acetylation. We identified BRPF1 deletions or point mutations in six additional individuals with a similar phenotype. Deletions of the 3p25 region, containing BRPF1 and SETD5, cause a defined ID syndrome where most of the clinical features are attributed to SETD5 deficiency. We compared the clinical symptoms of individuals carrying mutations or small deletions of BRPF1 alone or SETD5 alone with those of individuals with deletions encompassing both BRPF1 and SETD5. We conclude that both genes contribute to the phenotypic severity of 3p25 deletion syndrome but that some specific features, such as ptosis and blepharophimosis, are mostly driven by BRPF1 haploinsufficienc

    Biallelic Mutations in UNC80 Cause Persistent Hypotonia, Encephalopathy, Growth Retardation, and Severe Intellectual Disability

    Get PDF
    Ion channel proteins are required for both the establishment of resting membrane potentials and the generation of action potentials. Hundreds of mutations in genes encoding voltage-gated ion channels responsible for action potential generation have been found to cause severe neurological diseases. In contrast, the roles of voltage-independent "leak" channels, important for the establishment and maintenance of resting membrane potentials upon which action potentials are generated, are not well established in human disease. UNC80 is a large component of the NALCN sodium-leak channel complex that regulates the basal excitability of the nervous system. Loss-of-function mutations of NALCN cause infantile hypotonia with psychomotor retardation and characteristic fades (IHPRF). We report four individuals from three unrelated families who have homozygous missense or compound heterozygous truncating mutations in UNC80 and persistent hypotonia, encephalopathy, growth failure, and severe intellectual disability. Compared to control cells, HEK293T cells transfected with an expression plasmid containing the c.5098C>T (p.Pro1700Ser) UNC80 mutation found in one individual showed markedly decreased NALCN channel currents. Our findings demonstrate the fundamental significance of UNC80 and basal ionic conductance to human healt

    Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy

    No full text
    Aim Peripartum cardiomyopathy (PPCM) can be an initial manifestation of familial dilated cardiomyopathy (DCM). We aimed to identify mutations in families that could underlie their PPCM and DCM. Methods and results We collected 18 families with PPCM and DCM cases from various countries. We studied the clinical characteristics of the PPCM patients and affected relatives, and applied a targeted next-generation sequencing (NGS) approach to detect mutations in 48 genes known to be involved in inherited cardiomyopathies. We identified 4 pathogenic mutations in 4 of 18 families (22%): 3 in TTN and 1 in BAG3. In addition, we identified 6 variants of unknown clinical significance that may be pathogenic in 6 other families (33%): 4 in TTN, 1 in TNNC1, and 1 in MYH7. Measurements of passive force in single cardiomyocytes and titin isoform composition potentially support an upgrade of one of the variants of unknown clinical significance in TTN to a pathogenic mutation. Only 2 of 20 PPCM cases in these families showed the recovery of left ventricular function. Conclusion Targeted NGS shows that potentially causal mutations in cardiomyopathy-related genes are common in families with both PPCM and DCM. This supports the earlier finding that PPCM can be part of familial DCM. Our cohort is particularly characterized by a high proportion of TTN mutations and a low recovery rate in PPCM cases

    Mutations in Histone Acetylase Modifier BRPF1 Cause an Autosomal-Dominant Form of Intellectual Disability with Associated Ptosis

    No full text
    Intellectual disability (ID) is a common neurodevelopmental disorder exhibiting extreme genetic heterogeneity, and more than 500 genes have been implicated in Mendelian forms of ID. We performed exome sequencing in a large family affected by an autosomal-dominant form of mild syndromic ID with ptosis, growth retardation, and hypotonia, and we identified an inherited 2 bp deletion causing a frameshift in BRPF1 (c.1052_1053del) in five affected family members. BRPF1 encodes a protein modifier of two histone acetyltransferases associated with ID: KAT6A (also known as MOZ or MYST3) and KAT6B (MORF or MYST4). The mRNA transcript was not significantly reduced in affected fibroblasts and most likely produces a truncated protein (p.Val351Glyfs*8). The protein variant shows an aberrant cellular location, loss of certain protein interactions, and decreased histone H3K23 acetylation. We identified BRPF1 deletions or point mutations in six additional individuals with a similar phenotype. Deletions of the 3p25 region, containing BRPF1 and SETD5, cause a defined ID syndrome where most of the clinical features are attributed to SETD5 deficiency. We compared the clinical symptoms of individuals carrying mutations or small deletions of BRPF1 alone or SETD5 alone with those of individuals with deletions encompassing both BRPF1 and SETD5. We conclude that both genes contribute to the phenotypic severity of 3p25 deletion syndrome but that some specific features, such as ptosis and blepharophimosis, are mostly driven by BRPF1 haploinsufficiency
    corecore