515 research outputs found
Parallel Computation of Piecewise Linear Morse-Smale Segmentations
This paper presents a well-scaling parallel algorithm for the computation of
Morse-Smale (MS) segmentations, including the region separators and region
boundaries. The segmentation of the domain into ascending and descending
manifolds, solely defined on the vertices, improves the computational time
using path compression and fully segments the border region. Region boundaries
and region separators are generated using a multi-label marching tetrahedra
algorithm. This enables a fast and simple solution to find optimal parameter
settings in preliminary exploration steps by generating an MS complex preview.
It also poses a rapid option to generate a fast visual representation of the
region geometries for immediate utilization. Two experiments demonstrate the
performance of our approach with speedups of over an order of magnitude in
comparison to two publicly available implementations. The example section shows
the similarity to the MS complex, the useability of the approach, and the
benefits of this method with respect to the presented datasets. We provide our
implementation with the paper.Comment: Journal: IEEE Transactions on Visualization and Computer Graphics /
Submitted: 22-Jun-2022 / Accepted: 13-Mar-202
Emerging investigator series: : Use of behavioural endpoints in regulation of chemicals
Interest in behavioural ecotoxicology is growing, partly due to technological and computational advances in recording behaviours but also because of improvements of detection capacity facilitating reporting effects at environmentally relevant concentrations. The peer-reviewed literature now contains studies investigating the effects of chemicals, including pesticides and pharmaceuticals, on migration, dispersal, aggression, sociabilitygrouping, reproduction, feeding and anti-predator behaviours in vertebrates and invertebrates. To understand how behavioural studies could be used in regulatory decision-making we: 1) assessed the legal obstacles to using behavioural endpoints in EU chemicals regulation; 2) analysed the known cases of use of behavioural endpoints in EU chemicals regulation; and 3) provided examples of behavioural endpoints of relevance for population level effects. We conclude that the only legal obstacle to the use of behavioural endpoints in EU chemicals regulation is whether an endpoint is considered to be relevant at the population level or not. We also conclude that ecotoxicity studies investigating behavioural endpoints are occasionally used in the EU chemicals regulation, and underscore that behavioural endpoints can be relevant at the population level. To improve the current use of behavioural studies in regulatory decision-making contribution from all relevant stakeholders is required. We have the following recommendations: 1) researchers should conduct robust, well-designed and transparent studies that emphasize the relevance of the study for regulation of chemicals; 2) editors and scientific journals should promote detailed, reliable and clearly reported studies; 3) regulatory agencies and the chemical industry need to embrace new behavioural endpoints of relevance at the population level
Repeated exposure to transient obstructive sleep apnea-related conditions causes an atrial fibrillation substrate in a chronic rat model
Background
High night-to-night variability in obstructive sleep apnea (OSA) is associated with atrial fibrillation (AF). Obstructive apneas are characterized by intermittent deoxygenation-reoxygenation and intrathoracic pressure swings during ineffective inspiration against occluded upper airways.
Objective
We elucidated the effect of repeated exposure to transient OSA conditions simulated by intermittent negative upper airway pressure (INAP) on the development of an AF substrate.
Methods
INAP (48 events/4 h; apnea-hypopnea index 12 events/h) was applied in sedated spontaneously breathing rats (2% isoflurane) to simulate mild-to-moderate OSA. Rats without INAP served as a control group (CTR). In an acute test series (ATS), rats were either killed immediately (n = 9 per group) or after 24 hours of recovery (ATS-REC: n = 5 per group). To simulate high night-to-night variability in OSA, INAP applications (n = 10; 24 events/4 h; apnea-hypopnea index 6/h) were repeated every second day for 3 weeks in a chronic test series (CTS).
Results
INAP increased atrial oxidative stress acutely, represented in decreases of reduced to oxidized glutathione ratio (ATS: INAP: 0.33 ± 0.05 vs CTR: 1 ± 0.26; P = .016), which was reversible after 24 hours (ATS-REC: INAP vs CTR; P = .274). Although atrial oxidative stress did not accumulate in the CTS, atrial histological analysis revealed increased cardiomyocyte diameters, reduced connexin 43 expression, and increased interstitial fibrosis formation (CTS: INAP 7.0% ± 0.5% vs CTR 5.1% ± 0.3%; P = .013), which were associated with longer inducible AF episodes (CTS: INAP: 11.65 ± 4.43 seconds vs CTR: 0.7 ± 0.33 seconds; P = .033).
Conclusion
Acute simulation of OSA was associated with reversible atrial oxidative stress. Cumulative exposure to these transient OSA-related conditions resulted in AF substrates and was associated with increased AF susceptibility. Mild-to-moderate OSA with high night-to-night variability may deserve intensive management to prevent atrial substrate development
Atrial natriuretic factor
The discovery of the first well-defined natriuretic hormone, the Atrial Natriuretic Factor (ANF), has prompted research on its impact on volume regulation in health and disease. The natriuretic, diuretic, and smooth muscle-relaxing properties suggest an important role of this novel hormone in pathophysiological states with sodium or volume retention, such as congestive heart failure or cirrhosis of the liver. Investigations on the implications of ANF in liver disease have been performed for little more than 1 year, and results are still controversial in many respects. At present, it seems very likely that there is no absolute deficiency of plasma ANF in patients with cirrhosis. Moreover, elevated plasma levels in cirrhotics with ascites have been reported by several groups. However, as yet, a molecular characterization of this increased immunoreactivity is still lacking. There is disagreement on the reduced release of and renal response to ANF in subgroups of cirrhotics; however, stimulus-response-coupling might be impaired. Further studies are needed to elucidate the pathophysiological implications and therapeutical potential of ANF in patients with chronic liver disease
Recent advances in cardio-oncology:a report from the 'Heart Failure Association 2019 and World Congress on Acute Heart Failure 2019'
While anti-cancer therapies, including chemotherapy, immunotherapy, radiotherapy, and targeted therapy, are constantly advancing, cardiovascular toxicity has become a major challenge for cardiologists and oncologists. This has led to an increasing demand of cardio-oncology units in Europe and a growing interest of clinicians and researchers. The Heart Failure 2019 meeting of the Heart Failure Association of the European Society of Cardiology in Athens has therefore created a scientific programme that included four dedicated sessions on the topic along with several additional lectures. The major points that were discussed at the congress included the implementation and delivery of a cardio-oncology service, the collaboration among cardio-oncology experts, and the risk stratification, prevention, and early recognition of cardiotoxicity. Furthermore, sessions addressed the numerous different anti-cancer therapies associated with cardiotoxic effects and provided guidance on how to treat cancer patients who develop cardiovascular disease before, during, and after treatment
Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection.
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal
Epigenetic Modulators Link Mitochondrial Redox Homeostasis to Cardiac Function in a Sex-Dependent Manner
While excessive production of reactive oxygen species (ROS) is a characteristic hallmark of numerous diseases, clinical approaches that ameliorate oxidative stress have been unsuccessful. Here, utilizing multi-omics, we demonstrate that in cardiomyocytes, mitochondrial isocitrate dehydrogenase (IDH2) constitutes a major antioxidative defense mechanism. Paradoxically reduced expression of IDH2 associated with ventricular eccentric hypertrophy is counterbalanced by an increase in the enzyme activity. We unveil redox-dependent sex dimorphism, and extensive mutual regulation of the antioxidative activities of IDH2 and NRF2 by a feedforward network that involves 2-oxoglutarate and L-2-hydroxyglutarate and mediated in part through unconventional hydroxy-methylation of cytosine residues present in introns. Consequently, conditional targeting of ROS in a murine model of heart failure improves cardiac function in sex- and phenotype-dependent manners. Together, these insights may explain why previous attempts to treat heart failure with antioxidants have been unsuccessful and open new approaches to personalizing and, thereby, improving such treatment
BNP controls early load-dependent regulation of SERCA through calcineurin
Heart failure is characterised by reduced expression of sarcoplasmic reticulum calcium-ATPase (SERCA) and increased expression of B-type natriuretic peptide (BNP). The present study was performed to investigate causality of this inverse relationship under in vivo conditions in the transversal aortic constriction mouse model (TAC). Left ventricular SERCA-mRNA expression was significantly upregulated in TAC by 32% after 6 h, but not different from sham after 24 h. Serum proANP and BNP levels were increased in TAC after 24 h (BNP +274%, p < 0.01; proANP +60%, p < 0.05), but only proANP levels were increased after 6 h (+182%, p < 0.01). cGMP levels were only increased 24 h after TAC (+307%, p < 0.01), but not 6 h after TAC. BNP infusion inhibited the increase in SERCA expression 6 h after TAC. In BNP-receptor-knockout animals (GC-A), the expression of SERCA was still significantly increased 24 h after TAC at the mRNA level by 35% (p < 0.05), as well as at the protein level by 25% (p < 0.05). MCIP expression as an indicator of calcineurin activity was regulated in parallel to SERCA after 6 and 24 h. MCIP-mRNA was increased by 333% 6 h after TAC, but not significantly different from sham after 24 h. In the GC-A-KO mice, MCIP-mRNA was significantly increased in TAC compared to WT after 24 h. In mice with BNP infusion, MCIP was significantly lower 6 h after TAC compared to control animals. In conclusion, mechanical load leads to an upregulation of SERCA expression. This is followed by upregulation of natriuretic peptides with subsequent suppression of SERCA upregulation. Elevated natriuretic peptides may suppress SERCA expression by inhibition of calcineurin activity via activation of GC-A
Treatments targeting inotropy
Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation-contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term
A roadmap for therapeutic discovery in pulmonary hypertension associated with left heart failure. A scientific statement of the Heart Failure Association (HFA) of the ESC and the ESC Working Group on Pulmonary Circulation & Right Ventricular Function
\ua9 2024 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.Pulmonary hypertension (PH) associated with left heart failure (LHF) (PH-LHF) is one of the most common causes of PH. It directly contributes to symptoms and reduced functional capacity and negatively affects right heart function, ultimately leading to a poor prognosis. There are no specific treatments for PH-LHF, despite the high number of drugs tested so far. This scientific document addresses the main knowledge gaps in PH-LHF with emphasis on pathophysiology and clinical trials. Key identified issues include better understanding of the role of pulmonary venous versus arteriolar remodelling, multidimensional phenotyping to recognize patient subgroups positioned to respond to different therapies, and conduct of rigorous pre-clinical studies combining small and large animal models. Advancements in these areas are expected to better inform the design of clinical trials and extend treatment options beyond those effective in pulmonary arterial hypertension. Enrichment strategies, endpoint assessments, and thorough haemodynamic studies, both at rest and during exercise, are proposed to play primary roles to optimize early-stage development of candidate therapies for PH-LHF
- âŠ