135,561 research outputs found

    A Cosmic Microwave Background Radiation Polarimeter Using Superconducting Bearings

    Full text link
    Measurements of the polarization of the cosmic microwave background (CMB) radiation are expected to significantly increase our understanding of the early universe. We present a design for a CMB polarimeter in which a cryogenically cooled half wave plate rotates by means of a high-temperature superconducting (HTS) bearing. The design is optimized for implementation in MAXIPOL, a balloon-borne CMB polarimeter. A prototype bearing, consisting of commercially available ring-shaped permanent magnet and an array of YBCO bulk HTS material, has been constructed. We measured the coefficient of friction as a function of several parameters including temperature between 15 and 80 K, rotation frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm, and ambient pressure between 10^{-7} and 1 torr. The low rotational drag of the HTS bearing allows rotations for long periods of time with minimal input power and negligible wear and tear thus making this technology suitable for a future satellite mission.Comment: 6 pages, IEEE-Transactions of Applied Superconductivity, 2003, Vol. 13, in pres

    Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach

    Full text link
    An extension to the classical FPV model is developed for transcritical real-fluid combustion simulations in the context of finite volume, fully compressible, explicit solvers. A double-flux model is developed for transcritical flows to eliminate the spurious pressure oscillations. A hybrid scheme with entropy-stable flux correction is formulated to robustly represent large density ratios. The thermodynamics for ideal-gas values is modeled by a linearized specific heat ratio model. Parameters needed for the cubic EoS are pre-tabulated for the evaluation of departure functions and a quadratic expression is used to recover the attraction parameter. The novelty of the proposed approach lies in the ability to account for pressure and temperature variations from the baseline table. Cryogenic LOX/GH2 mixing and reacting cases are performed to demonstrate the capability of the proposed approach in multidimensional simulations. The proposed combustion model and numerical schemes are directly applicable for LES simulations of real applications under transcritical conditions.Comment: 55th AIAA Aerospace Sciences Meeting, Dallas, T

    Heavy quarkonium 2S states in light-front quark model

    Full text link
    We study the charmonium 2S states ψ\psi' and ηc\eta_c', and the bottomonium 2S states Υ\Upsilon' and ηb\eta_b', using the light-front quark model and the 2S state wave function of harmonic oscillator as the approximation of the 2S quarkonium wave function. The decay constants, transition form factors and masses of these mesons are calculated and compared with experimental data. Predictions of quantities such as Br(ψγηc)(\psi' \to \gamma \eta_c') are made. The 2S wave function may help us learn more about the structure of these heavy quarkonia.Comment: 5 latex pages, final version for journal publicatio

    Muscle Fatigue Analysis Using OpenSim

    Full text link
    In this research, attempts are made to conduct concrete muscle fatigue analysis of arbitrary motions on OpenSim, a digital human modeling platform. A plug-in is written on the base of a muscle fatigue model, which makes it possible to calculate the decline of force-output capability of each muscle along time. The plug-in is tested on a three-dimensional, 29 degree-of-freedom human model. Motion data is obtained by motion capturing during an arbitrary running at a speed of 3.96 m/s. Ten muscles are selected for concrete analysis. As a result, the force-output capability of these muscles reduced to 60%-70% after 10 minutes' running, on a general basis. Erector spinae, which loses 39.2% of its maximal capability, is found to be more fatigue-exposed than the others. The influence of subject attributes (fatigability) is evaluated and discussed

    Metal-superconductor transition at zero temperature: A case of unusual scaling

    Full text link
    An effective field theory is derived for the normal metal-to-superconductor quantum phase transition at T=0. The critical behavior is determined exactly for all dimensions d>2. Although the critical exponents \beta and \nu do not exist, the usual scaling relations, properly reinterpreted, still hold. A complete scaling description of the transition is given, and the physics underlying the unusual critical behavior is discussed. Quenched disorder leads to anomalously strong T_c-fluctuations which are shown to explain the experimentally observed broadening of the transition in low-T_c thin films.Comment: 4 pp., no figs, final version as publishe

    Extra Current and Integer Quantum Hall Conductance in the Spin-Orbit Coupling System

    Full text link
    We study the extra term of particle current in a 2D k-cubic Rashba spin-orbit coupling system and the integer quantization of the Hall conductance in this system. We provide a correct formula of charge current in this system and the careful consideration of extra currents provides a stronger theoretical basis for the theory of the quantum Hall effect which has not been considered before. The non-trivial extra contribution to the particle current density and local conductivity, which originates from the cubic dependence on the momentum operator in the Hamiltonian, will have no effect on the integer quantization of the Hall conductance. The extension of Noether's theorem for the 2D k-cubic Rashba system is also addressed. The two methods reach to exactly the same results.Comment: 6 page

    Imaging and controlling electron transport inside a quantum ring

    Full text link
    Traditionally, the understanding of quantum transport, coherent and ballistic1, relies on the measurement of macroscopic properties such as the conductance. While powerful when coupled to statistical theories, this approach cannot provide a detailed image of "how electrons behave down there". Ideally, understanding transport at the nanoscale would require tracking each electron inside the nano-device. Significant progress towards this goal was obtained by combining Scanning Probe Microscopy (SPM) with transport measurements2-7. Some studies even showed signatures of quantum transport in the surrounding of nanostructures4-6. Here, SPM is used to probe electron propagation inside an open quantum ring exhibiting the archetype of electron wave interference phenomena: the Aharonov-Bohm effect8. Conductance maps recorded while scanning the biased tip of a cryogenic atomic force microscope above the quantum ring show that the propagation of electrons, both coherent and ballistic, can be investigated in situ, and even be controlled by tuning the tip potential.Comment: 11 text pages + 3 figure

    Hyperon polarization in e^-p --> e^-HK with polarized electron beams

    Full text link
    We apply the picture proposed in a recent Letter for transverse hyperon polarization in unpolarized hadron-hadron collisions to the exclusive process e^-p --> e^-HK such as e^-p-->e^-\Lambda K^+, e^-p --> e^-\Sigma^+ K^0, or e^-p--> e^-\Sigma^0 K^+, or the similar process e^-p\to e^-n\pi^+ with longitudinally polarized electron beams. We present the predictions for the longitudinal polarizations of the hyperons or neutron in these reactions, which can be used as further tests of the picture.Comment: 15 pages, 2 figures. submitted to Phys. Rev.
    corecore