278,607 research outputs found
Nearly Mass-Degenerate Majorana Neutrinos: Double Beta Decay and Neutrino Oscillations
Assuming equal tree-level Majorana masses for the standard-model neutrinos,
either from the canonical seesaw mechanism or from a heavy scalar triplet, I
discuss how their radiative splitting may be relevant to neutrinoless double
beta decay and neutrino oscillations.Comment: 12 pages, including 4 figures, talk at NANP9
Five-dimensional metric gravity and the accelerated universe
The metric theories of gravity are generalized to five-dimensional
spacetimes. By assuming a hypersurface-orthogonal Killing vector field
representing the compact fifth dimension, the five-dimensional theories are
reduced to their four-dimensional formalism. Then we study the cosmology of a
special class of models in a spatially flat FRW spacetime. It
is shown that the parameter can be constrained to a certain range by the
current observed deceleration parameter, and its lower bound corresponds to the
Kaluza-Klein theory. It turns out that both expansion and contraction of the
extra dimension may prescribe the smooth transition from the deceleration era
to the acceleration era in the recent past as well as an accelerated scenario
for the present universe. Hence five-dimensional gravity can naturally
account for the present accelerated expansion of the universe. Moreover, the
models predict a transition from acceleration to deceleration in the future,
followed by a cosmic recollapse within finite time. This differs from the
prediction of the five-dimensional Brans-Dicke theory but is in consistent with
a recent prediction based on loop quantum cosmology.Comment: 14 pages, 9 figures; Version published in PR
A first step to accelerating fingerprint matching based on deformable minutiae clustering
Fingerprint recognition is one of the most used biometric
methods for authentication. The identification of a query fingerprint requires
matching its minutiae against every minutiae of all the fingerprints
of the database. The state-of-the-art matching algorithms are costly, from
a computational point of view, and inefficient on large datasets. In this
work, we include faster methods to accelerating DMC (the most accurate
fingerprint matching algorithm based only on minutiae). In particular,
we translate into C++ the functions of the algorithm which represent the
most costly tasks of the code; we create a library with the new code and
we link the library to the original C# code using a CLR Class Library
project by means of a C++/CLI Wrapper. Our solution re-implements
critical functions, e.g., the bit population count including a fast C++
PopCount library and the use of the squared Euclidean distance for calculating
the minutiae neighborhood. The experimental results show a
significant reduction of the execution time in the optimized functions of
the matching algorithm. Finally, a novel approach to improve the matching
algorithm, considering cache memory blocking and parallel data processing,
is presented as future work.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech
Design, Prototyping, and Testing of a Novel Flowpath with an Array of Six 3D Matrix Vitvo Bioreactors for the NASA Bioculture System
The NASA Bioculture System is an advanced cell culture closed-loop system containing highly automated flowpaths designed to conduct long term biology experiments on ISS with earth remote controllable medium flow, temperature, gas composition, medium exchange, cell sampling and fixation. This technology was already demonstrated with successful cardiomyocyte and osteocyte cultures experiments onboard the ISS and is now supporting NASA PI science. The Bioculture System, however, can only support 10 cassettes with disposable flowpaths, each containing a single hollow fiber bioreactor with a culture capacity of about 2ml. This constraint not only severely limits the number of investigators that can conduct experiments in space, but also subjects the experiments to limitations in the number of replicates and conditions that can be studied. To address these limitations, we sought a novel design solution to maximize the number of separate bioreactor cultures and volume that can be conducted simultaneously. To this end we designed, prototyped, and are now testing a six-Vitvo 3D Matrix 2ml bioreactor insert that replaces the conventional Bioculture System hollow fiber bioreactor. This design will allow the Bioculture System to support up to 60 different bioreactors and samples at once. Specifically, the novel gas-tight containment housing insert contains six COTS Rigenerand VITVO bioreactors stacked on each side of a heat sink powered by the existing heating element and pair of temperature sensors. Medium will be distributed into each bioreactor's cell-free chamber via its built-in Luer connector, then across the 3D matrix to the cell chamber, dissipating laminar flow and limiting fluid shear stresses that might mechanostimulate cell cultures. Gas (5% CO2 in air) will be supplied directly to the bioreactor gas-tight housing for exchange via the bioreactor flat-surface gas-permeable membranes, eliminating the need for the existing Bioculture System cassette oxygenator. If successfully implemented on ISS, this new multi-bioreactor insert for the Bioculture System has the potential to make real-time cell science experimentation in space more efficient and accessible to more investigators
A New Solution of the Yang-Baxter Equation Related to the Adjoint Representation of
A new solution of the Yang-Baxter equation, that is related to the adjoint
representation of the quantum enveloping algebra , is obtained by
fusion formulas from a non-standard solution.Comment: 16 pages (Latex), Preprint BIHEP-TH-93-3
Levinson's theorem for the Schr\"{o}dinger equation in two dimensions
Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically
symmetric potential in two dimensions is re-established by the Sturm-Liouville
theorem. The critical case, where the Schr\"{o}dinger equation has a finite
zero-energy solution, is analyzed in detail. It is shown that, in comparison
with Levinson's theorem in non-critical case, the half bound state for
wave, in which the wave function for the zero-energy solution does not decay
fast enough at infinity to be square integrable, will cause the phase shift of
wave at zero energy to increase an additional .Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email:
[email protected], [email protected]
Locking classical information
It is known that the maximum classical mutual information that can be
achieved between measurements on a pair of quantum systems can drastically
underestimate the quantum mutual information between those systems. In this
article, we quantify this distinction between classical and quantum information
by demonstrating that after removing a logarithmic-sized quantum system from
one half of a pair of perfectly correlated bitstrings, even the most sensitive
pair of measurements might only yield outcomes essentially independent of each
other. This effect is a form of information locking but the definition we use
is strictly stronger than those used previously. Moreover, we find that this
property is generic, in the sense that it occurs when removing a random
subsystem. As such, the effect might be relevant to statistical mechanics or
black hole physics. Previous work on information locking had always assumed a
uniform message. In this article, we assume only a min-entropy bound on the
message and also explore the effect of entanglement. We find that classical
information is strongly locked almost until it can be completely decoded. As a
cryptographic application of these results, we exhibit a quantum key
distribution protocol that is "secure" if the eavesdropper's information about
the secret key is measured using the accessible information but in which
leakage of even a logarithmic number of key bits compromises the secrecy of all
the others.Comment: 32 pages, 2 figure
Recommended from our members
The cumulative effects of known susceptibility variants to predict primary biliary cirrhosis risk.
Multiple genetic variants influence the risk for development of primary biliary cirrhosis (PBC). To explore the cumulative effects of known susceptibility loci on risk, we utilized a weighted genetic risk score (wGRS) to evaluate whether genetic information can predict susceptibility. The wGRS was created using 26 known susceptibility loci and investigated in 1840 UK PBC and 5164 controls. Our data indicate that the wGRS was significantly different between PBC and controls (P=1.61E-142). Moreover, we assessed predictive performance of wGRS on disease status by calculating the area under the receiver operator characteristic curve. The area under curve for the purely genetic model was 0.72 and for gender plus genetic model was 0.82, with confidence limits substantially above random predictions. The risk of PBC using logistic regression was estimated after dividing individuals into quartiles. Individuals in the highest disclosed risk group demonstrated a substantially increased risk for PBC compared with the lowest risk group (odds ratio: 9.3, P=1.91E-084). Finally, we validated our findings in an analysis of an Italian PBC cohort. Our data suggested that the wGRS, utilizing genetic variants, was significantly associated with increased risk for PBC with consistent discriminant ability. Our study is a first step toward risk prediction for PBC
- …