2,152 research outputs found
Anemia Prevalence among Pregnant Women and Birth Weight in Five Areas in China
Objectives: To investigate the current prevalence of anemia among pregnant women in different areas of China and the association with birth weight and educational level. Methods: A total of 6,413 women aged 24-37 in the third trimester of pregnancy from five areas were randomly selected from all gravidas who gave birth in the hospitals from 1999 to 2003. Blood hemoglobin concentration (Hb) was measured by the cyanomethemoglobin method; Hb <110 g/l was considered as anemia. Results: The overall prevalence of anemia was 58.6%, ranging from 48.1 to 70.5% in the five areas. There was a significant difference in the prevalence of anemia between women who have mental jobs and those who have physical jobs (52.3 vs. 61.1%, p <0.01). The prevalence of anemia depended on the level of education: with 52.9, 62.4 and 66.5%, for college, secondary school and primary education, respectively, and the difference was statistically significant (p = 0.005). Results showed that higher birth weight was associated with Hb concentrations ranging from 90 to 140 g/l, whereas lower birth weight occurred below 80 g/l and above 140 g/l Hb. Conclusions: The prevalence of anemia in Chinese pregnant women was high both in rural areas and towns. Area of residence, education level and type of job influenced the prevalence of anemia. Low maternal Hb concentrations influenced birth weight
A_4 flavour symmetry breaking scheme for understanding quark and neutrino mixing angles
We propose a spontaneous A_4 flavour symmetry breaking scheme to understand
the observed pattern of quark and neutrino mixing. The fermion mass eigenvalues
are arbitrary, but the mixing angles are constrained in such a way that the
overall patterns are explained while also leaving sufficient freedom to fit the
detailed features of the observed values, including CP violating phases. The
scheme realises the proposal of Low and Volkas to generate zero quark mixing
and tribimaximal neutrino mixing at tree-level, with deviations from both
arising from small corrections after spontaneous A_4 breaking. In the neutrino
sector, the breaking is A_4 --> Z_2, while in the quark and charged-lepton
sectors it is A_4 --> Z_3 = C_3. The full theory has A_4 completely broken, but
the two different unbroken subgroups in the two sectors force the dominant
mixing patterns to be as stated above. Radiative effects within each sector are
shown to deviate neutrino mixing from tribimaximal, while maintaining zero
quark mixing. Interactions between the two sectors -- "cross-talk" -- induce
nonzero quark mixing, and additional deviation from tribimaximal neutrino
mixing. We discuss the vacuum alignment challenge the scenario faces, and
suggest three generic ways to approach the problem. We follow up one of those
ways by sketching how an explicit model realising the symmetry breaking
structure may be constructed.Comment: 14 pages, no figures; v3: Section 5 rewritten to correct an error;
new section added to the appendix; added references; v4: minor change to
appendix C, version to be published by JHE
Recommended from our members
The Search for Benchmarks: When Do Crowds Provide Wisdom?
We compare the performance of a comprehensive set of alternative peer identification schemes used in economic benchmarking. Our results show the peer firms identified from aggregation of informed agents' revealed choices in Lee, Ma, and Wang (2014) perform best, followed by peers with the highest overlap in analyst coverage, in explaining cross-sectional variations in base firms' out-of-sample: (a) stock returns, (b) valuation multiples, (c) growth rates, (d) R&D expenditures, (e) leverage, and (f) profitability ratios. Conversely, peers firms identified by Google and Yahoo Finance, as well as product market competitors gleaned from 10-K dis-closures, turned in consistently worse performances. We contextualize these results in a simple model that predicts when information aggregation across heterogeneously informed individuals is likely to lead to improvements in dealing with the problem of economic benchmarking
Estimation of the Pitzer Parameters for 1–1, 2–1, 3–1, 4–1, and 2–2 Single Electrolytes at 25 °C
The Pitzer model is one of the most important thermodynamic models to predict the
behavior of aqueous electrolyte solutions, especially at high ionic strengths. However, most of the
parameters in the Pitzer equations have to be obtained experimentally and this represents an important
drawback to this model. Therefore, in order to make the Pitzer equations less dependent on experimental
data and more dependent on the properties of the solution, new equations that correlate the Pitzer
equations with the properties of the solution have been successfully developed for 1-1, 2-1, 3-1, 4-1 and
2-2 electrolytes. In particular, these equations were developed for two cases: (i) considers the original
Pitzer equations and (ii) considers some simplifications to the Pitzer equation
(assuming CMX , BMX (2) and 2 = 0). In particular, for case (ii), the second virial coefficients BMX (0) and BMX (1)
of the Pitzer equations were re-estimated using published experimental data of the osmotic coefficient
obtained from the literature. As a conclusion, both the simplified and the original Pitzer equations
presented a very good match with this published experimental data for the osmotic coefficients.
Additionally, the second virial coefficients BMX (0) and BMX (1) for both cases were successfully correlated
with the ionic radius and the ionic charge, and this is confirmed by the very high coefficients of
determination achieved (R2>0.96). However, these new equations are valid only to cases in which no
significant ion association occurs, which is also the basic premise of the original Pitzer model
Probing neutrino non-standard interactions with atmospheric neutrino data
We have reconsidered the atmospheric neutrino anomaly in light of the laetst
data from Super-Kamiokande contained events and from Super-Kamiokande and MACRO
up-going muons. We have reanalysed the proposed solution to the atmospheric
neutrino anomaly in terms of non-standard neutrino-matter interactions (NSI) as
well as the standard nu_mu -> nu_tau oscillations (OSC). Our statistical
analysis shows that a pure NSI mechanism is now ruled out at 99%, while the
standard nu_mu -> nu_tau OSC mechanism provides a quite remarkably good
description of the anomaly. We therefore study an extended mechanism of
neutrino propagation which combines both oscillation and non-standard
neutrino-matter interactions, in order to derive limits on flavour-changing
(FC) and non-universal (NU) neutrino interactions. We obtain that the
off-diagonal flavour-changing neutrino parameter epsilon and the diagonal
non-universality neutrino parameter epsilon' are confined to -0.03 < epsilon <
0.02 and |epsilon'| < 0.05 at 99.73% CL. These limits are model independent and
they are obtained from pure neutrino-physics processes. The stability of the
neutrino oscillation solution to the atmospheric neutrino anomaly against the
presence of non-standard neutrino interactions establishes the robustness of
the near-maximal atmospheric mixing and massive-neutrino hypothesis. The best
agreement with the data is obtained for Delta_m^2 = 2.3*10^{-3} eV^2,
sin^2(2*theta) = 1, epsilon = 6.7*10^{-3} and epsilon' = 1.1*10^{-3}, although
the chi^2 function is quite flat in the epsilon and epsilon' directions for
epsilon, epsilon' -> 0.Comment: 26 pages, LaTeX file using REVTeX4, 1 table and 12 figures included.
Added a revised analysis which takes into account the new 1489-day
Super-Kamiokande and final MACRO data. The bound on NSI parameters is
considerably improve
Atmospheric Neutrino Oscillations and New Physics
We study the robustness of the determination of the neutrino masses and
mixing from the analysis of atmospheric and K2K data under the presence of
different forms of phenomenologically allowed new physics in the nu_mu--nu_tau
sector. We focus on vector and tensor-like new physics interactions which allow
us to treat, in a model independent way, effects due to the violation of the
equivalence principle, violations of the Lorentz invariance both CPT conserving
and CPT violating, non-universal couplings to a torsion field and non-standard
neutrino interactions with matter. We perform a global analysis of the full
atmospheric data from SKI together with long baseline K2K data in the presence
of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together
with sub-dominant effects due to these forms of new physics. We show that
within the present degree of experimental precision, the extracted values of
masses and mixing are robust under those effects and we derive the upper bounds
on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include
The 3-3-1 model with S_4 flavor symmetry
We construct a 3-3-1 model based on family symmetry S_4 responsible for the
neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal
quark mixing have been obtained. The new lepton charge \mathcal{L} related to
the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L}
and the lepton parity P_l=(-)^L known as a residual symmetry of L have been
introduced which provide insights in this kind of model. The expected vacuum
alignments resulting in potential minimization can origin from appropriate
violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions
can be explained from the existence of such terms too. If P_l is not broken by
the vacuum values of the scalar fields, there is no mixing between the exotic
and the ordinary quarks at the tree level.Comment: 20 pages, revised versio
Disordered Boson Systems: A Perturbative Study
A hard-core disordered boson system is mapped onto a quantum spin 1/2
XY-model with transverse random fields. It is then generalized to a system of
spins with an arbitrary magnitude S and studied through a 1/S expansion. The
first order 1/S expansion corresponds to a spin-wave theory. The effect of weak
disorder is studied perturbatively within such a first order 1/S scheme. We
compute the reduction of the speed of sound and the life time of the Bloch
phonons in the regime of weak disorder. Generalizations of the present study to
the strong disordered regime are discussed.Comment: 27 pages, revte
Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting
The official published version of this Article can be found at the link below - Copyright @ 2006 ASM InternationalAn investigation has been made into the solidification behavior and microstructural evolution of AM50, AM70, and AM90 alloys during rheo-diecasting, their processibility, and the resulting mechanical properties. It was found that solidification of AM series alloys under intensive melt shearing in the unique twin-screw slurry maker during rheo-diecasting gave rise to numerous spheroidal primary magnesium (Mg) particles that were uniformly present in the microstructure. As a result, the network of the beta-Mg17Al12 phase was consistently interrupted by these spheroidal and ductile particles. Such a microstructure reduced the obstacle of deformation and the harmfulness of the beta-Mg17Al12 network on ductility, and therefore improved the ductility of rheo-diecast AM alloys. It was shown that, even with 9 wt pct Al, the elongation of rheo-diecast AM90 still achieved (9 +/- 1.2) pct. Rheodiecasting thus provides an attractive processing route for upgrading the alloy specification of AM series alloys by increasing the aluminum (Al) content while ensuring ductility. Assessment of the processibility of AM series alloys for semisolid processing showed that high Al content AM series alloys are more suitable for rheo-diecasting than low Al content alloys, because of the lower sensitivity of solid fraction to temperature, the lower liquidus temperature, and the smaller interval between the semisolid processing temperature and the complete solidification temperature.This work is supported by the EPSR
Confusing non-standard neutrino interactions with oscillations at a neutrino factory
Most neutrino mass theories contain non-standard interactions (NSI) of
neutrinos which can be either non-universal (NU) or flavor-changing (FC). We
study the impact of such interactions on the determination of neutrino mixing
parameters at a neutrino factory using the so-called ``golden channels''
\pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain
combination of FC interactions in neutrino source and earth matter can give
exactly the same signal as oscillations arising due to \theta_{13}. This
implies that information about \theta_{13} can only be obtained if bounds on
NSI are available. Taking into account the existing bounds on FC interactions,
this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders
of magnitude. A near detector at a neutrino factory offers the possibility to
obtain stringent bounds on some NSI parameters. Such near site detector
constitutes an essential ingredient of a neutrino factory and a necessary step
towards the determination of \theta_{13} and subsequent study of leptonic CP
violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in
Phs. Rev. D, references adde
- …